
189

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 189�197, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Case Study on Naked Objects
in Agile Software Development

Heikki Keränen1,2 and Pekka Abrahamsson1

1 VTT Technical Research Centre of Finland, PO Box 1100, FIN-90571 Oulu, Finland
{heikki.keranen,pekka.abrahamsson}@vtt.fi

2 Department of Information Processing Science, FIN-90014 University of Oulu, Finland

Abstract. Naked Objects and agile software development have been suggested
to complement each other. Very few empirical studies to date exist where a
product has been developed using the Naked Objects technologies in an agile
development environment. This study reports results of a case study where a
mobile application was developed using the Naked Objects Framework. Quali-
tative and quantitative data was collected systematically throughout the project.
The empirical results offer support for the argument that the Naked Objects ap-
proach is suitable for agile software development. The results also reveal weak-
nesses in the current Naked Object Framework, namely, that it is not yet mature
enough for applications that require intense database operations. The results
also show that the development team was able to create an operational user-
interface just in five hours, which demonstrates the applicability of the Naked
Object Framework in practical settings.

1 Introduction

Naked Objects [4] is an architectural pattern which exposes core business objects to
the user. Naked Objects Framework is a software framework which supports imple-
menting this pattern. Pawson and Wade [5] have proposed that the use of the Naked
Objects architectural pattern complements the Extreme Programming�s (XP) set of
practices. Developers can, for example, make use of the Naked Object Framework to
render the requirements in a concrete form that is immediately usable by the end-users
[5]. Originally, Pawson and Wade suggested that only exploration phase would bene-
fit from the use of the Naked Objects Framework. Yet, the long term goal is to de-
velop the Naked Objects Framework to a state that the development of the working
prototype can be continued to a full working release.

Very few empirical studies exist today where a product has been developed using
the Naked Object technologies in an agile development environment (i.e., XP or oth-
ers). The lack of empirical studies hinders the ability of other practitioners to evaluate
the proposed approach and makes it difficult for a researcher to pinpoint the weak-
nesses and strengths of Naked Objects pattern and framework. This study reports the
results of a case study where a mobile application, enabling users around the world
access the Helsinki Stock Exchange for trading and viewing stock market develop-
ment, was developed. Fig. 1 shows a part of the user interface.

The project involved student developers working 8 weeks in calendar time and us-
ing a total development effort of 810 hours. While this is the first of the kind empiri-
cal study on the Naked Objects Framework, we characterize the study as of the 'em-
pirical exploratory' type. No hypotheses were made to be tested. The results produced

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.2
 Optimize For Fast Web View: Yes
 Embed Thumbnails: Yes
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [1200 1200] dpi
 Paper Size: [439 666.2] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 900 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Warn and Continue
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Convert All Colors to sRGB
 Intent: Default
Working Spaces:
 Grayscale ICC Profile:
 RGB ICC Profile: sRGB IEC61966-2.1
 CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: Yes

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: Yes
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: No
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: No

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [1200 1200]
>> setpagedevice

190 Heikki Keränen and Pekka Abrahamsson

in this study will therefore set some references for other developers and researchers,
which can be tested or refuted. This paper concentrates on the process aspect of the
development. In addition, the weaknesses and strengths of the Naked Objects based
development are proposed including lessons learned from the project.

2 Naked Objects
In the Naked Objects Framework, the core business objects encapsulate all business
data and behaviour. They implement the Naked Object Java interface and obey some
simple coding conventions. The framework has an Object Viewing Mechanism
(OVM) which autogenerates a desktop user interface based on information in the
business objects. Core interfaces implemented by the application and the Java reflec-
tion mechanism are utilised to do that. [4] Due to the abstract nature of Naked Ob-
jects, it is possible to create OVM's for different kind of devices. In this project, we
developed an OVM for 'Java Mobile Information Device Profile (MIDP) 2.0'-capable
mobile phones called MIDP-OVM. The Naked Objects Framework also contains a set
of Object Stores, which provide automatic persistence for the business objects. In this
project, we used the XML Object Store, which saves the business objects into XML
files, because it was considered to be the most mature object store. Due to the auto-
matic user interface generation and object stores, the implementation of an application
is supposed to be rapid.

3 Research Design

The research method utilized was a controlled case study approach [6], which is an
approach drawn from the action research, case study research and experimentation. In
a controlled case study, the development environment is a laboratory setting. Yet, the
approach strives at an industry-like business and delivery pressure where the devel-
opment of a particular system is of the highest importance.

The Naked Objects development team involved four students as the development
resources. The team worked for 24 hours a week in the development facilities. Both
quantitative and qualitative data were collected. The developers collected the used
effort for each defined task with a precision of 5 minutes using paper/pen and an in-
house tool. The size of the development work, i.e. logical lines of code, was collected
on daily basis using automated counters. The qualitative data includes the developer
team interview.

Fig. 1. Part of the stock application user interface: Main menu, branch view and stock view

A Case Study on Naked Objects in Agile Software Development 191

The development was guided by an adapted version of the Extreme Programming
approach called Mobile-D [1]. The adaptation has been performed taking into account
the specific demands of the mobile development environment. The development cycle
involves 5 system releases having the duration of one to two weeks. Before the pro-
ject started, a rough version of MIDP-OVM existed1. It was, however, only capable of
browsing objects and needed a lot of development before a real application could be
used through it. The idea was to refine it in the beginning of the project and after that
develop an application on top of it. MIDP-OVM is application independent and was
developed for the purposes of enabling other developers to use Naked Objects on
mobile platforms.

4 Results
In this section the results of the case study are presented.

4.1 Effort Distribution

Effort distribution is presented in Fig. 2. The coding phase consists of tasks related to
the implementation of a feature. The management includes the collection of metrics,
daily meetings and the project management work. The section 'Other' includes the
environment setup, studying, coaching and the documentation activities. The planning
activities include the planning game in the beginning of each iteration, as well as the
architectural planning during development iterations. The quality assurance includes
the tasks for verifying the user stories and related tasks. The defect fixing includes the
refactoring and bug fixing activities. The testing includes writing test cases and a pre-
release testing session, which is performed prior to the release. The release formalities
include the formation of baseline and the acceptance test performed by the customer.

As shown in Fig. 2, the development profiles are slightly different in the MIDP-
OVM development as compared to the application development. A lot of defect fixing
(15%) was done in the application construction phase. The management activities also
took more effort in the application development phase than in the framework devel-
opment phase. More testing (i.e. 10%) was required for the platform development
than application (i.e. 5%) part.

Other, 20 %

Release
formalities, 3 %

Defect fixing,
2 %

Testing,
 10 %

Quality
assurance,

 4 %

Planning,
 20 %

Coding,
 36 %

Management,
 5 % Other, 16 %

Defect fixing,
15 %

Testing, 5 %

Release
formalities, 3 %

Planning, 15 %

Quality
assurance,

 2 %

Management,
 12 %

Coding,
 32 %

Fig. 2. Effort distribution of the MIDP-OVM construction phase (left) and the application
construction phase (right)

1 http://opensource.erve.vtt.fi/pdaovm/midp-ovm/

192 Heikki Keränen and Pekka Abrahamsson

4.2 Estimation Accuracy and Precision

Estimation accuracy is presented in Fig. 3 using box plots2. The data used for drawing
the box plots is based on the tasks that the developers� identified for the user story
level implementation. The data below the thicker line indicates overestimation and
data above the line refers to underestimation of the tasks.

-100 %

0 %

100 %

200 %

300 %

400 %

MIDP-OVM
Release 1

MIDP-OVM
Release 2

MIDP-OVM
Release 3

Application
Release 1

Application
Release 2

Correction
release

Q1
Min
Median
Max
Q3

MIDP-OVM Application

Fig. 3. Estimation accuracy

Overall, the data shows that the estimation error is a bit higher in the application
creation than creating the MIDP-OVM. There is a high variance in the second and
third releases of both MIDP-OVM and application. What is especially high, is the
highest overspending in task time (Max-value), over 400 percent, which tells about
unexpected problems in the development.

Figure 4 presents the estimation precision development, i.e. how many actual hours
the developers lost by faulty estimates. The thick line indicates a loss of zero hours.
The data points below the line indicate that an implementation of the task took less
time than expected. The data points above the thicker line indicate that a particular
task took longer than expected.

-10,00

-5,00

0,00

5,00

10,00

H
ou

rs

MIDP-OVM
Release 1

MIDP-OVM
Release 2

MIDP-OVM
Release 3

App.
Release 1

App.
Release 2

Corr.
Rel-

MIDP-OVM Application

Fig. 4. Hours lost by faulty estimates

2 A box plot diagram visualises the 5 number summary of a data set. Median value is the line

in the shaded box area. A1 (first or lower quartile) shows the median of the lower 50% of
data points. Q3 (third or upper quartile) shows the median of upper 50% of data points. The
minimum value indicates the lowest and the maximum the highest values in the respective
data sets.

A Case Study on Naked Objects in Agile Software Development 193

By observing Fig. 4, we can see that in the implementation of the MIDP-OVM the
estimation precision enhanced over time. On the other hand, in the application crea-
tion phase the implementation of the basic application went smoothly with very small
task sizes, and thus, small errors in the absolute error estimates, but towards the end
of the project, the estimates become less accurate.

4.3 Distribution of Task Sizes and User Story Effort

In the planning game, the team, together with a customer, identifies the user stories to
be included in the iteration. The team divides each user story into a set of tasks pref-
erably between 2-10 hours. The distribution of the actual task sizes are presented in
Fig. 5.

0,0

10,0

20,0

MIDP-OVM
Release 1

MIDP-OVM
Release 2

MIDP-OVM
Release 3

Application
Release 1

Application
Release 2

Correction
release

R
ea

lis
ed

 ta
sk

 s
iz

e
(h

ou
rs

)

Q1
Min
Median
Max
Q3

MIDP-OVM Application

Fig. 5. Actual task sizes in each release

As can be deduced from the earlier figures, the estimation error caused some tasks
to exceed the suggested limits. Yet, the data reveals that in spite of the complexity of
creating OVM's, the team was able to split the user stories into reasonable sized tasks.

When creating the application, there were more tasks that took less than two hours,
which indicates some difficulties in combining tasks into larger ones.

The user story effort correlates to how fast the project is able to generate visible re-
sults, meaningful to the customer. The user story effort is presented in Table 1. In the
planning game of Application Release 1, there were first several user stories concern-
ing the application requirements, introduced by the customer. As these were, how-
ever, considered trivial to be implemented using Naked Objects, the team decided to
group these stories to one big story called �Create application� and define those sto-
ries as tasks.

Table 1. Actual effort used in the implemented user stories

Release OVM
R1

OVM
R2

OVM
R3

App.
R1

App.
R2

Corr.
Rel.

User story effort (median, h) 13,7 49,1 9,7 0,6 9,7 9,8
User story effort (max, h) 9,5 98,2 24,7 2,4 23,7 14,5

User stories implemented 2 2 5 6 9 2
User stories postponed for next rel. 0 2 0 1 1 0

The size of this story was estimated at 8 hours and it was implemented in 5 hours,
which is the size of a typical task in the normal development. To make it fair to com-

194 Heikki Keränen and Pekka Abrahamsson

pare the implementation speed from the user point of view, in table 1 this �Create
application� -story is split back into the original user stories.

In the MIDP-OVM Release 2, there is only one huge story and another with zero
effort because it became a side effect of the huge story. This huge story is due to
complete rewriting of the MIDP-OVM. The implementation speed of the user stories
in Application Release 1 is remarkable (median 0.6 hours). Most of the effort in Ap-
plication Release 1 was used to a story that took over 30 hours and still had to be
postponed for the next release.

4.4 Growth of the Code Base

The development of the code base is important, since it portrays how the project pro-
gressed over time in terms of actual product development. Figure 6 presents the code
size development during the project.

The initial version of MIDP-OVM was roughly two thousand lines of code, but af-
ter the experiences of the first release, the team decided to discard the old version and
rewrite the MIDP-OVM starting from scratch, which explains the amount of code
going down to zero. Bugs in the MIDP-OVM had to be fixed and some features had
to be added in it, which explains the little changes in the amount of code after the
application implementation started.

0

1000

2000

3000

4000

5000

18.10.2004 1.11.2004 15.11.2004 29.11.2004 13.12.2004
Date

Li
ne

s
of

 c
od

e

MIDP-OVM
Application

MIDP-OVM Application

OVM
Rel. 1
21.10.

OVM
Rel. 2
4.11.

OVM Rel. 3 11.11.

App.
Rel 1

18.11.

App. Rel 2
2.12.

Corr. rel.
10.12.

Fig. 6. Growth of the code base (LOC) during the project

4.5 Naked Objects from the Developers� Viewpoint

Any new software process innovation needs to be accepted by the developers. Other-
wise the impact of the new technology is limited. In the interview, we asked the de-
velopment team about the positive and negative experiences of using the Naked Ob-
jects Framework, as well as how easy or difficult they perceived the use of the
framework and the pattern to be.

The programmers found the Naked Objects principle simple, but they felt that it
requires quite little practice to learn how the framework actually works:

�For just writing the Naked Object application I think [it] is very easy,
[it takes] just one or two days, and [a good way to do it is] writing cou-
ple of things and testing them if they work and if not try in another way
and after three or four trials you get it, basically because there are new
concepts, but they are not so many.� [developer 1]

A Case Study on Naked Objects in Agile Software Development 195

Developers viewed that the implementation an OVM was especially challenging:

�But programming the MIDP-OVM is like getting really inside the
framework, how it works, and not just using in [in a way] the ordinary
programmer would do it.� [developer 1]

As a part of the application, the team had to do a module which periodically parses
the stock data from the public web pages and feeds it into the application. Due to
limited time and lack of examples of using application specific direct connection to an
SQL database, the developers were consulted in using XMLObjectStore to store data.
Other object stores were considered but they seemed either not to be compatible with
the framework version we used, or were labeled as "proof of concept" -version. Also,
there were no examples on how to make application tailored persistence of Naked
Objects. In the application release 2, the developers told that the XMLObjectStore is
not capable of handling a vast amount of automatic updates. There was no time to
explore other approaches.

The developers also reported other problems with the Object Store concept. The in-
tegration of the web page parser to the Object Store was found problematic:

�There is just not a clean interface to do that and that is why we had so
many problems with it.� [developer 1]

There were also less severe problems which were considered as bugs in the frame-
work:

�We found out that although the book said we could disable some ac-
tions or [editing] associations, but at least this framework we used did
not support those.� [developer 3]
�The framework itself uses a strange way to call all the classes in the
application once in a while and load the objects. Finally, we managed
to solve the problem by putting the actual method calls in the title-
method, so we had to be creative.� [developer 3] �At first we ended up
in an endless loop.� [developer 2]

The developers� opinion was that Naked Objects suits well for agile development:

�I even think that its biggest advantage is that after a very short time of
coding, maybe two or three hours, you already see the result.� [devel-
oper 1]

5 Discussion

As it has been stated a few times, there are very few case studies on the Naked Object
technology that would be comparable to the study presented in this paper. The closest
one on the Java technology and on a similar research setting can be found in [2] (i.e.,
the �eXpert� project) where a web based system was developed using the same cyclic
approach and development rhythm. Also, the practices and tools are mostly the same
as well as some of the support team members.

One of the greatest differences compared to the eXpert project is that in that project
the maximum estimation error varies greatly: In their study, the highest estimation
error in the release was always from 100% to 170%. In our case, there were releases

196 Heikki Keränen and Pekka Abrahamsson

well under 100% and the three releases experienced over 290% estimation errors. One
reason, we suspect, is the defects in the Naked Objects Framework. Another is the
lack of documentation and code examples on extending the framework and integrat-
ing it with legacy software. The third reason might be the complexity of writing ex-
tensions to the framework due to the reflection properties and abstract behaviour - it is
easier to hard code things, as it is done in traditional software development, than in
this case making the MIDP-OVM application independent.

It seems that the creation of MIDP-OVM follows the characteristics of traditional
agile software project in the sense that the task size estimations become more accu-
rate. On the other hand, when creating an application using Naked Objects, it seems
that the beginning of the project goes very fast, with very small errors in task time
estimations, but after a while, the development slows down and the estimation accu-
racy deteriorates, due to the fact that some parts of the software need to be imple-
mented without Naked Objects and integration of those parts to the Naked Objects
application may be hard. Due to the very limited time to implement the application,
we cannot predict if the estimation accuracy would enhance over time.

Compared to the results of Pawson [3], in this case, we did not need business agil-
ity in this project, as the desired functionality was pretty much fixed before the project
started. This study suggests that although the business agility of the Naked Objects
applications is good [3], difficulties integrating Naked Objects into the traditional
systems might cause a risk in that sense, since when decision to use the Naked Ob-
jects technology is done, all the future business changes may not be known.

As a conclusion, we can identify three principal lessons learned:

• Based on this study, it seems that the Naked Objects Framework (version 1.2) is
not yet mature for making serious business applications having a lot of objects and
multiuser security requirements. Generally, the problem seems to be �leaving
those predefined paths the Naked Objects people were defining�, as one of the
team members commented; this is often necessary because the framework is not
designed to address all problems of all applications.

• The rapid development of the first versions of the Naked Objects applications
makes it possible to use Naked Objects in an exploratory phase, as Pawson and
Wade suggested [5]. In this project, the requirements for the application were
pretty well known, so we used the default Mobile-D way of not creating code dur-
ing the planning phase, but normally, the first versions could be created with close
interaction with the customer.

• Naked Objects enables a fast realization of user stories, as the data clearly showed.

6 Conclusions and Future Work
This paper has presented a first-of-a-kind empirical case study on a project using the
Naked Objects Framework. The results show that the current Objects Stores are not
mature for applications that need a high number of objects and high throughput. The
lack of documentation and knowledge on how to do sample code, and lack of time in
the project made it impossible to try the application tailored persistence for Naked
Objects. The ability to generate applications fast is a remarkable feature of the Naked
Objects technology and it may change the software business, if the current problems
can be solved.

A Case Study on Naked Objects in Agile Software Development 197

The usability of the autogenerated user interface was outside the scope of this pa-
per and needs to be studied. It should be noted that the current development of the
Naked Objects Framework is addressing the problems found in this study.

References

1. Abrahamsson, P., Hanhineva, A., Hulkko, et al. Mobile-D: An Agile Approach for Mobile
Application Development, OOPSLA 2004, Poster session, Vancouver, Canada, 2004

2. Abrahamsson, P. and Koskela, J., Extreme programming: A survey of empirical results from
a controlled case study, ISESE 2004.

3. Pawson, R., Naked Objects. PhD thesis, Trinity College, Dublin, 2004.
4. Pawson, R. and Matthews, R., Naked Objects. 2002: J Wiley.
5. Pawson, R. and Wade, V., Agile Development Using Naked Objects, XP 2003, p. 97-103.
6. Salo, O. and Abrahamsson, P. Empirical evaluation of agile software development: The con-

trolled case study approach, Profes 2004.

