
Naked Objects versus Traditional Mobile Platform Development:

A Comparative Case Study

Heikki Keränen
1, 2

 and Pekka Abrahamsson
1

1
VTT Technical Research Centre of Finland

PO Box 1100, FIN-90571 Oulu, Finland
2
Department of Information processing science

FIN90014 University of Oulu, Finland

{heikki.keranen; pekka.abrahamsson}@vtt.fi

Abstract

It has been suggested that use of the Naked Objects

pattern could contribute to business agility of

applications and reduce the amount of the application

code up to 75 percent in a desktop environment. Very

little empirical evidence exists to support these claims,

however. This paper reports results of a study where

two agile software development projects created the

same mobile application using two different

technologies. The first project did the development

using the traditional mobile platform, and the second

project used the Naked Objects Framework. Both

projects used the same agile software development

process. The results show that Naked Objects

produced 79 % less application code and 91 % less

user interface code. Yet, the version of the Naked

Objects Framework used was not found to be mature

enough for proper implementation of all required

functionality. It is concluded that, if further developed,

Naked Objects can be a very potential technical

development platform for business-oriented

applications. Implications of the study are addressed.

1. Introduction

Naked Objects [6] is an architectural pattern which

exposes core business objects to a user. The pattern

implementation is supported by a toolkit called the

Naked Objects Framework. Pawson and Matthews

claim that the Naked Objects technology has many

advantages over the traditional object oriented

development principles. These include reducing the

length of the development cycle and empowering the

user as a problem solver. Increased business agility is

achieved, since even radical modifications from the

business point of view are implemented rapidly, with

small changes, to the system [6]. Pawson and Wade [8]

have suggested that the Naked Objects pattern fits well

into the agile development principles early in the

project when the user requirements are explored. The

recent developments of the Naked Objects technology

are improving the framework so that it can be

successfully used to carry out the development of a full

working release of the software.

Very few empirical analyses of the Naked Objects

technology are, however, available. Pawson [7]

conducted one comparative implementation for a

desktop application, which showed a dramatic 75 %

reduction of the application code size. Bettin [3]

speculated that the use of Naked Objects may reduce

manual coding effort up to 80-95 %. It is not very clear

from the Bettin’s study what the empirical setting was.

It appears that he used theoretical devices (i.e. rather

than empirical) to come up with his results. However,

these results alone are not sufficient for a convincing

empirical body of evidence but they serve as a good

motivation to study the Naked Objects technology

further.

Myers and Rosson [5] pointed out that nearly fifty

percent of the code in applications is devoted to the

user interface. One of the key ideas in the Naked

Objects technology is that major portions of the user

interface are automatically generated, which helps in

saving significant amounts of code.

In this study, two agile projects developed the same

mobile application, which enabled users to access the

Helsinki Stock Exchange for trading and viewing stock

markets in a Java enabled mobile phone. Both projects

utilized the same agile software development method.

The first project utilized a traditional mobile

development environment and the second one utilized

the Naked Objects Framework. The functionality

requirements for the applications were the same. Thus,

this provides a good basis for comparing the results

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

and finding evidence about the validity of Pawson’s

[7] and Bettin’s [3] claims.

This paper presents a lot of empirical data, since so

little empirical data on the Naked Objects -based

development exists. Thus the data is of exploratory

type and serves as a reference for other researchers and

practitioners.

The paper is composed as follows. The next section

describes the Naked Objects technology. This is

followed by a description of the research design and

the results of the study, after which the results are

discussed and implications are drawn.

2. Naked Objects Framework

In this paper, traditional mobile software platform is

consisting of the industry standard platform

components. These components include Java Mobile

Device Information Profile (MIDP) (mobile phone

side) and, on the server side, an SQL database and

Java 2 SDK, Java Server Pages, Java 2 Enterprise

Edition.

When using these techniques, the software is

typically divided into a user interface layer (client), a

server layer and a database backend. Regardless of the

selected components, the developers have to develop

all these layers and implement a communication

protocol between them. Usually, a business level

modification to the application causes modifications to

all of these layers. Often, the implementation of the

user interface takes the most of the effort.

The Naked Objects Framework is a Java-based

software framework which helps to utilize the Naked

Objects architectural pattern. In the Naked Objects

pattern, the core business objects encapsulate all

business data and behavior. In the Naked Objects

Framework, they implement the Naked Object Java

interface, and the core business objects obey a set of

simple coding conventions. The framework has an

Object Viewing Mechanism (OVM) which

autogenerates a user interface based on information

contained in the business objects. The core interfaces

implemented by the application and the Java reflection

mechanism provide the information for the

autogenerated user interface. [7].

Due to the abstract nature of Naked Objects, it is

possible to create OVMs for different kind of devices.

This study utilized an OVM for MIDP called the

MIDP-OVM1. To complement the autogenerated UI, a

set of specific views can be developed for selected

business objects, if necessary.

1 Freely downloadable from

http://opensource.tte.erve.vtt.fi/pdaovm/midp-ovm/

The Naked Objects Framework also contains a set

of Object Stores, which provide automatic persistence

for the business objects. This study used an XML

Object Store, which persists the business objects into a

set XML files.

3. Research Design

This section describes how the research design for

the study is laid out. The research method is a

comparative case study [9].

In both projects, the development was guided by an

adapted version of the Extreme Programming approach

called Mobile-D [1]. The adaptation has been

performed taking into account the specific demands

(variability, memory use, screen size, etc.) of the

mobile development environment. The development

proceeds in one to two-week iterations. Each iteration

is divided into three parts: planning day, working day

and release day. Thus, in a single iteration, there is one

planning day and one release day and a multiple

number of working-days.

3.1. Stock Exchange Application

The outline of the developed software is presented

in Figure 1. Stock market information is parsed from

the public web pages and is stored into the database

several times a day. The user can access this data using

a Java client in the mobile phone. In addition to the

public market data, a user can enter information about

his investments to the system and see their current

value and daily changes. The user can also set alerts to

share prices. The user can also trade in the system.

User

Mobile Phone Server

Public Web server

<< HTTP >>

Java

Client
Server

DB updater

Database

Figure 1. Deployment of the developed
software

3.2. Project 1: zOmbie

The first project is called ‘zOmbie’ and it was

carried between October and December 2003. The

development team of zOmbie project involved four

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

students and two researchers as the development

resources.

The project was given a time frame of eight weeks

and the total effort was 1070 hours. The team worked

24 hours a week (i.e., four days a week, six hours a

day) in the development facilities. The project was

divided into six small releases having a duration of one

or two weeks. Two weeks prior to project launch the

team performed a self-study on XP-literature [2]. In

addition, two days training on XP practices and tools

was organized.

3.3. Project 2: Naked Zombie

Project called ‘Roger’ was carried out between

October and December 2004 and was fixed to last

eight weeks. The development team involved four

students as the development resources. The team

worked 24 hours a week in the development facilities

and the total effort was 810 hours. The Roger project

was divided into two subprojects: The first subproject

implemented an OVM for mobile phones, because the

previous version of MIDP-OVM was not mature

enough for the project. This subproject took the first

half (four weeks) of the Roger project.

The MIDP-OVM is application independent and

during the development time of MIDP-OVM, an

existing example application of the Naked Objects

Framework was used to test MIDP-OVM

functionality.

The second subproject, called ‘Naked Zombie’,

took the second half (four weeks) of the Roger project

and the total effort was 380 hours. Naked Zombie

implemented the Stock exchange application. In this

paper, only the Naked Zombie is examined. During the

Naked Zombie –project, the team had access to the

outcome of the zOmbie-project, including the working

implementation, source code and design

documentation.

One of the team members had participated in

implementing the first version of MIDP-OVM prior

this project, and thus had experience of Naked Objects.

Two weeks prior to the project launch, the team

performed a self-study by studying a basic book on XP

[2] and Naked Objects [6]. Half a day training sessions

were given on creating Naked Objects application and

current status of the MIDP-OVM and another half a

day session on the Mobile-D development rhythm,

architecture design and XP practices.

Table 1 lists the software environment used in

zOmbie and Naked Zombie -project.

3.3. Data Collection

Both quantitative and qualitative data were

collected. Developers collected the use of effort for

each defined task with a precision of 5 minutes, using

paper and pen and an in-house developed tool. The

team used continuous integration and the CVS

repository was updated on a daily basis. After the

project had ended, both development teams have been

interviewed. The interviews have been recorded and

transcribed.

Table 1. Technical environment

Item zOmbie Naked Zombie

Server side

language

Java 2 SDK

1.4.1

Java 2 SDK 1.4.2

Phone side

language

Java MIDP 1.0 Java MIDP 2.0

Web server Tomcat 4.1 -

Framework - Naked Objects

Framework 1.2.2

Database MySQL 4.0.9 +

Java connector

XML Object Store

Development

environment

Eclipse 2.1,

Nokia Dev.

Suite 2.0 for

J2ME

Eclipse 3.0.1,

Eclipse ME J2ME

Plug-in

Software

configuration

management

CVS (1.11.2); integrated to Eclipse

Documents MS Office XP MS Office XP,

Rational Rose

4. Results

In this section, the results of the comparative case

study are presented. First the user interface layouts are

compared. This is followed by development process

data including effort distribution, estimation accuracy

and precision, distribution of task size and user story

effort and growth of the code base. Thus, the

comparison will be based on a fairly large number of

exploratory empirical data.

Table 2 compares the key metrics of zOmbie and

Naked Zombie -projects. The calendar time was fixed

before the projects.

The total effort shows the time the team has been in

the development facilities. Effort used for tasks

indicates the project velocity [2]. Logical Lines of

Code (LLOC) [4] indicates the work size, which also

includes the test code. In order to facilitate the

comparison, later in the paper, the code size will be

shown without the tests.

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

Table 2 shows that considerably less effort was

used for the Naked Zombie project than for the

zOmbie project. The team productivity of the Naked

Zombie team was considerably higher than the zOmbie

team.

Table 2. Overview of the project data

Collected data zOmbie

Naked

Zombie

Com-

parison

Calendar time

(weeks)

8 4 -50 %

Total effort (hours) 1073 383 -64 %

Effort used for

tasks (hours)

447

(42%)

158

(41%)

-65 %

Logical LOCs

implemented

6282 3416 -46 %

Team productivity

(LLOC/hour)

14,1 21,7 +54 %

4.1. User Interface

Part of the user interface of the zOmbie -application

is presented in Figure 2a and Naked Zombie,

respectively, in Figure 2b.

a)

b)
Figure 2. zOmbie user interface (a) and Naked

Zombie user interface (b)

Figure 2 shows that the user interfaces are not

identical but differ slightly from each other. The views

and navigation are quite similar. The Largest

differences are in the operations between multiple

objects. The functionality of user interfaces is the

same, except for three differences: The Naked Objects

-version does not support multiple users – all users

have access to the same objects. Built in support for

multiple users was coming in the next version of the

Naked Objects Framework and would considerably

ease constructing this feature to application so we did

not want to put effort on this. ‘Trade by sending email'

-feature is missing in the Naked Zombie, but that was

also only partially implemented in the zOmbie project.

The Naked Zombie, on the other hand, is capable of

displaying actual live news, taken from public web

pages. In the zOmbie application, the news are hard

coded into the server for demonstration purposes.

Usability tests are not a part of this study, but there

is clearly a problem in both user interfaces: They both

feel slow. This is mostly due to high GPRS network

latency and the fact that both applications work like a

browser for the database backend - every navigation

command causes a roundtrip to the server. The latency

of the navigation commands in both applications is

around one second when using GPRS network.

Additionally, bugs of the Naked Objects

Framework caused some functions not to work

properly. The Object Store sometimes returns a null

pointer although a proper handle to object should be

returned. Also, the performance of XML Object Store

was not sufficient for frequent updates of the market

information.

4.2. Effort Distribution

Effort distribution is presented in Figure 3. The

coding phase consists of tasks related to the

implementation of a feature. The management includes

metrics collection, daily meetings and the project

management work. Section ‘Other’ includes

environment setup, studying, coaching and the

documentation activities. The planning activities

include planning game in the beginning of each

iteration as well as architectural planning during

development iterations. The quality assurance includes

tasks for verifying the user stories and related tasks.

The defect fixing includes refactoring and bug fixing

activities. The testing includes writing test cases and

pre-release testing session, which is performed prior to

the release.

As shown in Figure 3, the development profiles are

only slightly different in zOmbie and Naked Zombie

projects. A lot of defect fixing (15 %) was done in the

Naked Zombie construction phase. Much of this is

explained by bug fixes required by the MIDP-OVM,

which is addressed in the discussion section of this

paper.

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

0 %

10 %

20 %

30 %

40 %

50 %

C
odi

ng

M
an

age
m

en
t

O
th

er

P
la
nn

in
g

Q
ua

lit
y
as

su
ra

nc
e

D
efe

ct
 fi
xi
ng

Tes
tin

g

zOmbie Naked Zombie

Figure 3. Effort distribution

4.3. Estimation Accuracy & Precision

Estimation accuracy is presented in Figure 4 using

box plots2. The data used for drawing the box plots is

based on the tasks that the users identified for user

story level implementation. The data below the 0 % -

line indicates overestimation and data above the line

refers to underestimation of the tasks.

The fixed eight week timeframe of the zOmbie

project resulted into six releases due to one or two

week iterations. The four week time frame resulted

into three releases in Naked Zombie project.

The estimation accuracy in both projects is

approximately on the same level. However, the

maximum estimation error tends to come down in the

zOmbie project during the project, but seems to be

opposite in the Naked Zombie project. Still, the

absolute error range in terms of actual hours is quite

tolerable. Figure 5 presents the development of the

estimation precision, i.e. how many actual hours the

developers lost by faulty estimates. The thick line

indicates a loss of zero hours. The data points below

indicate that a implementation of the task took less

2 A box plot diagram visualizes the 5 number summary of a data set.

Median value is the line in the shaded box area. A1 (first or lower

quartile) shows the median of the lower 50% of data points. Q3

(third or upper quartile) shows the median of upper 50% of data

points. The minimum value indicates the lowest and the maximum

the highest values in the respective data sets.

time than expected. The data points above the

thickened line indicate that a particular task took

longer than expected.

By observing Figure 5, it can be seen that the first

tasks of the Naked Zombie project have a very high

estimation precision but the general trend in both

projects is alike.

-100 %

0 %

100 %

200 %

300 %

400 %

R1 R2 R3 R4 R5 R6 R1 R2 R3

Q1 Min Median Max Q3

b)a)

Figure 4. Estimation accuracy in terms of
estimation % of zOmbie project (a) and Naked

Zombie project (b)

4.4. Distribution of Task Size & User Story

Effort

In the planning game, together with a customer, the

team identifies the user stories to be included in the

iteration. The team divides each user story into a set of

tasks, preferably between 2-10 hours. The distribution

of the actual task sizes are presented in Figure 6.

The zOmbie team clearly had difficulties with some

tasks, but overall in both projects, the tasks were

evaluated in the suggested limits.

Despite of the same functionality of both

applications, the user stories are not the same and thus

cannot be directly compared. However, the number of

-10,0

0,0

10,0

20,0

L
o

s
t

h
o

u
rs

b)a)

n=97 n=35

R1 R2 R3 R4 R5
R1 R2

Figure 5. Hours lost by faulty estimates in zOmbie (a) and Naked Zombie (b) projects

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

user stories and user story effort and the speed of

implementation from the customer point of view can

be compared. The user story effort is presented in

Table 3.

Since the functionality in both applications is

approximately the same, in Table 3 we can deduce that

the user stories of Naked Zombie delivered more value

to the customer. Still, the implementation of the user

stories took less time.

0

10

20

30

40

R1 R2 R3 R4 R5 R6 R1 R2 R3

R
e
a
li

s
e
d

 t
a
s
k
 s

iz
e
 (

h
o

u
rs

)

Q1

Min

Median

Max

Q3

b)a)

Figure 6. Actual task sizes in each release of
zOmbie project (a) and Naked Zombie -project

(b)

Table 3. Actual effort used in implemented
user stories

zOmbie

Naked

Zombie

User stories implemented 22 12

User story effort (median,

hours)

18.9 9.7

User story effort (max, hours) 40.0 33.2

4.5. Growth of the Code Base

The development of the code base is important

since it describes how the project progressed over the

time in terms of actual product development. Figure 7

presents the code size development during the zOmbie

and NakedZombie projects. The code sizes for each

day are obtained from CVS repository after the project.

The test code is left out to make the comparison fair.

The code base development is analyzed by the

major software packages. This gives information on

which phases of the project the development of

packages took place. The architecture and structure of

the software sub-packages evolve during the project.

The package structures presented in Figure 7 are taken

from the final version and the previous versions are

adjusted to match that structure.

In Figure 7a, the ‘Middlet’ section represents all the

code located in the mobile phone. The server consists

of the server side business objects, such as ‘Stock’ and

‘Portfolio’. Also, the database connection is handled

by these classes. ‘Datagen’ acquires stock information

updates from the web pages and feeds them to the

database. The ‘Servlet’ package consists of only one

class taking care of the HTTP-requests send by the

middlet.

0

1000

2000

3000

4000

5000

6000

6.10.03 20.10.03 3.11.03 17.11.03 1.12.03 Date
L

o
g

ic
a
l

L
O

C

Server

Middlet

Servlet

App total

Datagen

Total

R1

R2

R3

R4
R5a)

0

1000

2000

3000

4000

5000

6000

15.11.2004 22.11.2004 29.11.2004 6.12.2004 13.12.2004

Date

L
o

g
ic

a
l

L
O

C

Naked Zombie

Custom renderers

App total

Datacollector

Application

R1

R2

Corr.

Rel.

b)

Figure 7. Development of zOmbie (a) and
Naked Zombie (b) code bases

Figure 7b presents the code base development of

Naked Zombie -application. Section ‘Naked Zombie’

consists of business objects, such as ‘Stock’ and

‘Portfolio’, defined according to the rules of the Naked

Objects Framework. ‘Custom renderers’ are user

interface components made for special cases, like

displaying the history graph of the stock value

development. The basic cases are handled by the

MIDP-OVM and no code for Naked Zombie was

needed. ‘Datacollector’ takes stock information from

the web pages and feeds it both to the zOmbie SQL

database and to the NakedZombie XML Object Store.

In Figure 7 we can observe that in the zOmbie

project, the user interface code was produced from

beginning of the project, while in the Naked Zombie

project, the development of UI code started at the

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

second iteration, almost in the middle of the project. In

the zOmbie project, the first signs of a web site parser

appeared in the code repository in the middle of the

project, while in the Naked Zombie, there was code in

the third project day.

Table 4 compares the code sizes of final versions of

zOmbie and Naked Zombie applications. Between the

two projects, packages ‘Server’ and ‘Naked Zombie’

represent the business objects and they can be

compared. ‘Middlet’ and ‘Custom renderers’ packages

represent the user interface code roughly and they can

be compared.

Table 4 shows significant savings in all areas except

in the ‘Datagen’ - ‘Data collector’ comparison. The

most significant savings (91 %) come from the biggest

portion of the zOmbie project: the ‘Middlet’ package.

Some savings also come in the business objects. This

is mostly due to fact that an automatic persistence

mechanism is used in Naked Zombie.

The growth of the data collector in the Naked

Zombie is due to the fact that it has been redesigned

and enhanced and it feeds data to both the zOmbie and

the Naked Zombie applications. The data collector also

contains an internal structure for representing the data

acquired from web pages. Parts updating the zOmbie

SQL database and Naked Objects XML Object Store

are componentized and they implement the same

updater interfaces. The sizes of those components are

presented in Table 5.

Table 5. Naked Zombie Data collector

Component LLOC

zOmbie updater 442

Naked Zombie updater 621

Other code (web site parsing etc.) 1328

Total 2391

Table 5 indicates that the real difference between

the data collectors of those different persistence

mechanisms is not so big.

5. Discussion

This study shows advantages of using Naked

Objects for mobile applications. The greatest

advantages are faster user story implementation and

savings in code size.

A notable feature of the Naked Zombie project

compared to the zOmbie project is that the beginning

of the project goes rapidly with very precise task

estimates. This provides initial evidence that creating a

basic Naked Objects application is a straightforward

task. Later in the project, creating the datacollector and

special views then approaches more to the traditional

development.

A drawback in the study is that the Naked Zombie

project started right after MIDP-OVM implementation,

so the project team was already in good pace and the

process and tools were already familiar. This gives an

advantage for the Naked Zombie project. Another

issue in the research setting favoring Naked Zombie

team is that the material of the zOmbie project was

available to them. While this obviously facilitated the

requirements gathering this does not explain the

savings in the amount of actual code produced. The

team reported the most value of the access to the

zOmbie project outcome was a database schema design

document from which the Naked Objects classes were

easy to derive. These two reasons may partly explain

the better team productivity presented in Table 2.

Difference in productivity might be also explained by

smaller team requiring less communication.

Another drawback of this study is that quality of

code, which might explain difference in productivity,

was not considered.

On the other hand, the fact that the zOmbie project

was based on a mature technology somehow

counterbalances this study. Also there were not radical

changes in requirements during the project so the

difference to Naked Zombie is not so great.

The study revealed that the version of the Naked

Objects Framework used was not mature: There were

bugs in the framework, XML Object Store was not

Table 4. Comparison of code size (test code excluded)

zOmbie Naked Zombie

Package LLOC Proportion Package LLOC Proportion Comparison

Middlet 3590 65 % Custom renderers 310 9 % -91 %

Server 1190 21 % Naked Zombie 715 21 % -40 %

Servlet 69 1 % n/a n/a n/a -100 %

App total 4849 87 % App total 1025 30 % -79 %

Datagen 715 13 % Data collector 2391 70 % +234 %

Total 5564 100 % Total 3416 100 % -39 %

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

adequate for frequent updates of stock information, the

documentation was not very comprehensive, and the

working examples did not cover special cases, such as

building one's own database backend. All these

reasons caused unnecessary struggling with Naked

Object Framework and the four weeks time span did

not encourage trying another alternatives as the

database solution.

Authors of the Naked Objects Framework have

already put effort on these issues in the upcoming

framework version.

This study shows that the UI takes over half of the

application code when using traditional mobile

software platform. This is in line with the study done

by Myers and Rosson [5]. Naked Objects bites into the

fact and the greatest savings when using Naked

Objects come in the user interface side, due to

autogeneration of the user interface. However, the

usability of the produced applications should be tested,

because UI autogeneration may have effects on the

usability of the applications. Also run-time properties

such as CPU and memory usage need to be studied.

One of the issues affecting usability in results of

both projects, is the high latency of the mobile

networks. The round trip time of GPRS networks is

around one second. The best way to address this

problem is to redesign the client-server protocol so that

the client keeps the most valuable data in a local cache

and uses the network connection to synchronize data

rather than waiting for the server in every navigation

command.

However, despite of these challenges, there is still

value in using Naked Objects in the mobile

environment if the main target is a desktop

environment, since the mobile application comes

almost free due to the UI autogeneration. If further

improvement in mobile UI is needed, a custom client

and protocol could be built and Naked Objects could

be used as a backend. Also, more advanced mobile

networks, like WCDMA, bring down the latency to

around 200 milliseconds, which reduces the need for a

custom protocol.

As a conclusion, two principal lessons learned can

be identified:

This study provides confirmation that user

interface development takes the largest effort of

the mobile business applications.

Naked Objects has a potential to save significantly

in development effort of mobile business

applications on the condition that the usability of

the autogenerated UI is on a good level.

6. Conclusions

This paper presented a comparative case study

where the same application was implemented in

traditional mobile software platform and Naked

Objects.

This study shows that when using the traditional

mobile platform, over half of the development effort

goes to the developing of the user interface. In this

study, the Naked Objects was able to save 91 % in the

user interface code and 79 % of the whole application.

The version of the Naked Objects Framework used

was not considered to be mature and caused some

problems during the development, namely the default

database backend was not sufficient for intense

database operations and no instructions how to easily

build your own was not found.

The Naked Objects technology, namely user

interface autogeneration has an effect to the usability

of the application, but this is not within the scope of

this paper.

Due to the great savings in the development effort,

we feel that the Naked Objects technique is worth

exploring further.

7. References

[1] Abrahamsson, P., Hanhineva, A., Hulkko, et al., “Mobile-

D: An Agile Approach for Mobile Application

Development”, OOPSLA 2004, Poster session, Vancouver,

Canada, 2004.

[2] Beck, K., Extreme programming explained: Embrace

change, Addison-Wesley, 2003.

[3] Bettin, J., “Measuring the potential of domain-specific

modeling techniques”, Proceedings of OOPSLA 2002.

[4] Humphrey, W., S., “A discipline for software

engineering”, Reading, Mass.: Addison Wesley, 1995.

[5] Myers, B. A., Rosson, M. B., “Survey on User Interface

Programming”, Proc. CHI’92, ACM Press, 1992, pp. 195-

202.

[6] Pawson, R., and Matthews, R., Naked Objects, J Wiley,

2002.

[7] Pawson, R., Naked Objects, PhD thesis, Trinity College,

Dublin, 2004.

[8] Pawson, R., and Wade, V., “Agile Development Using

Naked Objects”, XP 2003, pp. 97-103.

[9] Yin, R., K., Case Study Research Design and Methods,

2nd ed., Sage Publications, 1994.

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

