Copyright Springer, 2005

Systematical Validation of Learning
in Agile Softwar e Development Environment

Outi Salo

VTT Technical Research Centre of Finland
P.O. Box 1100, FIN-90571 Oulu, Finland
Outi.Salo@wtt.fi

Abstract. This paper illustrates implications from four case studies in which
Agile software development teams conducted iterative project retrospectives to
improve and adapt their software development processes. It was detected that
the existing techniques lack a systematic approach to iteratively validate the
implementation and effectiveness of software process improvement actions
with both quantitative and qualitative data. Also, the case studies reveaed that
the organizational level can only benefit from the learning of project teams if
the knowledge and reasoning behind the process improvements is converted
into such an explicit format that it can be utilized for learning in
organizationa level also. Thus, this paper illustrates how these deprivations
were accomplished in the case projects with the support of a structured
template.

1 Introduction

Agile software development offers both need and opportunity for adapting and
improving the software development process rapidly and effectively. One of the
Adgile principles (http://agilemanifesto.org/principles.html) is that the team should
regularly reflect on how to become more effective, and tune and adjust its behavior
accordingly. The short development cycles provide continuous and rapid loops to
iteratively enhance the process during Agile software development projects.

Some techniques suggest how the learning of the project team could be iteratively
transferred into concrete software process improvements in Agile software
development, namely a reflection workshop technique [1] and postmortem reviews
[2]. While both of these techniques most likely accomplish this goal, they both seem
to lack the means to systematically validate the effects of the improvements.
However, Extreme Programming (XP) [3], for one, requires that the teams can
change the rules only if they also agree on how they will assess the effects of the
change [4]. Nor do the existing techniques provide guidance on how the tacit or even
explicit knowledge and learning of the project teams can be converted into an
explicit form that can be utilized in organizational learning as well.

mailto:Outi.Salo@vtt.fi
http://agilemanifesto.org/principles.html

Copyright Springer, 2005

In this paper, an extension for the existing project retrospective techniques is
proposed to support the systematic implementation and validation of software
process improvements in Agile projects using both quantitative and qualitative data,
and to provide organizational level with insights into the projects. The propositions
presented in this paper are particularly suitable for Agile software development
context where the continuum of short iterations provide the opportunity for such
activities.

2 Research Context

The research was conducted at VTT Technical Research Centre of Finland in four
Agile case studies (Table 1). The case projects used an XP [3] based software
development process that evolved during the case projects to include relevant
extensions such as SPI activities.

Table 1. Characteristics of the case projects

Characteristic eXpert ZOmbie bAmbie uniCorn
Teamsize 4 developers 5.5 developers 4 developers 6 developers
Total team effort 75PM 10PM 55PM 52 PM
End product Intranet app Mobile app Mobile app Mobile app
Iterations 3 X two weeks 1 x one week 1 x one week 2 x two weeks

3 x oneweek 3 X two weeks 3 X two weeks 7 x one week
2 x one week 2 x one week

In all case projects, project retrospectives were conducted iteratively to improve
and adapt the software development process. The last retrospective in every project
was considered a project postmortem, contributing more directly to the
organizational level software process improvement. All the previous retrospectives,
however, concentrated on the iterative learning and improvement of a single project
yet also supported a “bottom-up approach” for organizational learning.

The technique used, i.e. Post-Iteration Workshops, (hereafter referred as PIWS)
combines and adapts certain e ements from both the workshop technique [1] and the
postmortem review technique [2] (as presented in [5]). Furthermore, it includes
modifications and extensions evolved and experimented in the series of case studies.

3 Systematic Validation of Process | mprovements

Soon after the first case study it was realized that a systematic way to validate the
effects of learning (i.e., the process improvement actions agreed by the project team
in the retrospectives) was needed for two specific reasons. Firstly, the project itself
could control the implementation of the agreed process enhancements and evaluate
whether they actually improved the process. Secondly, the organization needed a way
to examine how and why individual projects adapted their base process, and how

Copyright Springer, 2005

successfully. Without this kind of explicit knowledge supported with qualitative and
guantitative data, the process changes in organizational level would be a shot in the
dark rather than validated learning to be shared and diffused organizationally.

A dructured template (i.e, an Action Point List) was generated to provide
guidance for project team on the issues to be considered for every process
improvement action and information for both project and organizational levels of
how the SPI in individual projects made progress. It was filled in every PIW session
with the moderator and the project team. Also, the list from the previous PIW was
updated regarding the validation of earlier SPI actions according to the validation
plan. Figure 1 illustrates the structure of the template along with a set of examples
from the case projects.

Improvement Topic: Test-Driven Development

Finding Action Point Actor Validation plan Validation

Deficiency and Support team will Project | Teamwill interpret | Situation not improved

lacking of TDD test coach theteam the Manager | thedatafrom 1% based on the

cases caused by next planning day and 2™ iterationin | experiencesof theteam

absent knowledgeof | Anaysethequality the next PIW to and the metrics data.

TDD. and coverageof test | Tracker | evaluatethe More support needed
cases (1% and 2™ improvement. for the next iteration (
iteration) => new ap).

Improvement Topic: Configuration management

Finding Action Point Actor Validation plan Validation

Corrections made Baseline made at Project | Teamwill discuss | Working fine according

during release day the beginning of Manager | theimprovement to theteam. Ongoing

caused irrecoverable | releaseday (instead of thegtuationin practice.

Stuation. at the end) the next PIW.

Improvement Topic: Task estimation

Finding Action Point Actor Validation plan Validation

Task estimationstoo | Anaysetask datato | Tracker | Teaminterprets Datarevealed too big

inaccurateinrelease | evaluate the cause thedatainthenext | tasks. Splitting needed.

1. =>release of delaysin each PIW to find ways

delayed. task. to improve.

Splitting of tasks Task will be split to Project Interpret the Smaller task sze

needed to improve max. 4 hourssze. Manager | metricsdatainthe | seemedtoimprove

effort estimation. next PIW to seeif effort estimation. 4
Analysis of effort effort estimations hoursisagood size for
edimations. Tracker | improved. task when possible.

Fig. 1. Example of filled Action Paint List

In the PIW'’s, the problematic issues that the software developers had faced during
the previous iteration were generated and structured using the KJ method [6], as also
suggested in postmortem review technique [2]. These grouped and labeled findings
were then the basis for focus group discussion [7] that aimed for discovering and
agreeing process enhancements for the subsequent iteration. The “Improvement
Topic” field in Action Point List refers to the labels of the grouped findings that the
project team generated on the flap board during the PIW. This way the process
improvements could be traced all the way back to the groups of findings in certain
workshop. The purpose of the “Finding” field is to provide sufficiently detailed
explicit knowledge of the specific problems in each topic area based on the

Copyright Springer, 2005

discussion of the project team. “Action point” field clarifies what is the mutually
agreed concrete action to be taken in the next iteration to improve the situation.
“Actor” defines the responsibilities for each action point to ensure its
implementation. The “Validation plan” field is used to record the project team’s
decisions on how the success of the improvement will be assessed effectively and also
to reveal the schedule of the action. The validation should be carefully considered for
each action point. The qualitative data (i.e. experience) of the software developersis
always needed in validating if a certain process enhancement really is an
improvement. Often, however, quantitative verification is also needed, especially for
the organizational level. In such a case the availability and analysis of the metrics
needed should be planned at this point. The “Validation” field is filled in the next
PIW as the validation is carried out as planned including the possible interpretations
of analyzed data. In practice, the data interpretation and sharing of experiences
during a group discussion often generated new improvement opportunities and
action points. Also, one goa of validation is to agree if the specific process
improvement should be further employed or rejected.

It can be said that the changes made in the project level were usually fairly small,
yet effective enough to ease up the daily work of the project team and increase their
motivation [5, 8]. The more radical decisions on improving the process were madein
the organizational level often based on the ideas generated by the project teams.
These improvement opportunities (e.g., changes to organizational data tracking
tools) could not be done on the project level alone.

4 Discussion

Agile software development provides an opportunity to iteratively generate and
implement enhancements during the software development process. In the case
studies, the PIWs were conducted based partly on the two existing Agile techniques,
namely a reflection workshop technique [1] and postmortem reviews [2]. They were
found to be effective and motivating in improving and adapting the software
development process in Agile case projects [5, 7]. However, it was redlized that the
earlier suggested techniques lacked the mechanisms to support the iterative
implementation and evaluation of the process improvement actions, and thus, they
were included in the PIW technique. Also, it was realized that the organizational
level will benefit from the learning of projects only if the knowledge and reasoning
behind the process improvements are converted into such an explicit form that can
be utilized for learning on the organizational level aswell.

Thus, this paper discusses how the systematic implementation and verification of
the software process improvements as well as the flow of process knowledge from
projects to organizational level can be supported with a template. It guides the
project team to the issues to be considered for every process improvement action,
including the quantitative follow-up of the process enhancements. The sequential
“Action Point Lists” also provide a means to transfer the knowledge between project
and organizational levels and should be supplemented with the analysis and

Copyright Springer, 2005

interpreted of quantitative data when needed. As the organizational level can view
concrete chains of reasoning behind the software process improvement actions -
supported with both quantitative and qualitative data, it can gain new ideas and
insights from single projects which is essential if learning is to take place on the
organizational level [8].

The focus of this paper isto point out the importance of the systematic follow-up
and validation of software process improvements in iterative SPI cycles during Agile
software development and to discuss how the benefits of this kind of project level
software process improvement should be utilized in organizational level also. This
paper is an important part of research of continuous software process improvement
in Agile software development context. The thorough analysis of the research data
for validating the proposed solution and as well as the presentation of the PIW
technique are out of the scope of this paper.

5. Acknowledgements

This study is done in Agile-ITEA project funded by TEKES (National Technology
Agency of Finland). It is part of larger research topic of continuous software process
improvement in Agile software development context. Acknowledgements to the
software developers of al the case projects for their thorough participation in the
process improvement activities. Also, sincere thanks to Dr. Pekka Abrahamsson,
Hanna Hulkko and Minna Pikkarainen for their valuable comments.

References

1. Cockburn, A., Agile Software Development. The Agile Software Development
Series, ed. A. Cockburn and J. Highsmith. 2002, Boston: Addison-Wesley. 278.

2. Dingseyr, T. and G.K. Hanssen. Extending Agile Methods. Postmortem Reviews
as Extended Feedback. in 4th International Workshop on Learning Software
Organizations (LS0'02)). 2002. Chicago, lllinois, USA.

3. Beck, K., Extreme Programming Explained: Embrace Change. 2000: Addison
Wesley Longman, Inc. 190.

4. Beck, K., Embracing Change with Extreme Programming. |[EEE Computer,
1999. 32(10): p. 70-77.

5. Sdo, O, & a. Saf-Adaptability of Agile Software Processes: A Case Sudy on
Post-Iteration Workhops. in 5th International Conference on Extreme
Programming and Agile Processes in Software Engineering (XP 2004). 2004.
Garmisch-Partenkirchen, Germany: Springer.

6. Scupin, R., The KJ Method: A Technique for Analyzing Data Derived from
Japanese Ethnology. Human Organization, 1997. 56(2): p. 233-237.

7. Kerlinger, F.N. and H.B. Lee, Foundations of Behavioral Research. Fourth
Edition ed. 2002: Harcourt College Publishers. 890.

Copyright Springer, 2005

8. Salo, O. Improving Software Process in Agile Software Development Projects:
Results from Two XP Case Sudies. in EUROMICRO 2004. 2004. Rennes,
France: IEEE Computer Society Press.

9. Garvin, D.A., Learning in Action. 2000, Boston, Massachusetts: Harvard
Business School Press. 256.

