
1

X IMPROVING BUSINESS AGILITY
THROUGH TECHNICAL SOLUTIONS:

A Case Study on Test-Driven Development
in Mobile Software Development

Pekka Abrahamsson
VTT Technical Research Centre of Finland

Oulu, Finland

Antti Hanhineva
Elbit Oy

Oulu, Finland

Juho Jäälinoja
Nokia Technology Platforms

Oulu, Finland

Abstract This paper maintains that efficient business agility requires actions from all
levels of the organization in order to strive for success in a turbulent business
environment. Agility and agile software development solutions are suggested
as yielding benefit in a volatile environment, which is characterized by
continuously changing requirements and unstable development technologies.
Test-driven development (TDD) is an agile practice where the tests are written
before the actual program code. TDD is a technical enabler for increasing
agility at the developer and product project levels. Existing empirical
literature on TDD has demonstrated increased productivity and more robust
code, among other important benefits. This paper reports results of a case
study where a mobile application was developed for global markets, using the
TDD approach. Our first results show that the adoption of TDD is difficult
and the potential agility benefits may not be readily available. The lessons
learned from the case study are presented.

1 INTRODUCTION

This paper has its roots in the software engineering discipline where agile methods
and principles have gained a significant amount of attention recently. Agile software

2 Part #: TItle

development ideas can be traced back as early as the 1960s and even beyond (Larman
and Basili 2003). Since the mid-1990s, several methods have been proposed to meet the
needs of the turbulent business environment (for an overview of the existing methods,
see Abrahamsson et al. 2002; Boehm and Turner 2003). Empirical evidence is scarce
but quickly emerging. Abrahamsson et al. (2003) present the evolutionary path of agile
software development methods and propose that the software engineering and informa-
tion systems fields have, independently of each other, approached similar conclusions
on the state of IS/SE development. The existing methods, to a certain extent, are
idealized views, holding a strong prescriptive orientation, on how software and systems
should be constructed. The agile movement seeks to provide an alternative view on
software development through a set of values and principles (for details, see
www.agilemanifesto.org).

The mobile telecommunications industry has shown itself to be comprised of a
highly competitive, uncertain, and dynamic environment (Lal et al. 2001). Agile soft-
ware development solutions can be seen as providing a good fit for the mobile environ-
ment, with its the high volatility and tough time-to-market needs. Mobile applications
are generally quite small and the majority of them are developed by small software
teams. Organizations operating in this type of business environment need to react
rapidly to changing market needs. The efforts of organizations attempting to increase
their responsiveness will fall short if agility is not pursued at all levels of the
organization, including partnered or collaborative development at the interorganizational
level. If organizational structures do not support rapid information sharing and short
feedback cycles, agility benefits are not achieved. Indeed, a number of organizations
are keenly interested in adopting some set of agile practices and principles for use. Test-
driven development (TDD) is one of several agile practices. It has become popular with
the introduction of the eXtreme Programming (Beck 1999) method. The aim of TDD
is to offer agility benefits through an automated unit test suite and more robust code.
Extensive automation is required, since agile principles promote common code owner-
ship and expect the system to be always running. Other important benefits have also
been suggested. Empirical evidence regarding the application of TDD in different
environments is still thin.

This paper reports results from a case study where a mobile application was
developed for global markets in a close-to-industry setting, using the controlled case
study approach (Salo and Abrahamsson 2004) as the research method. The development
team was very successful in achieving the business target. Yet, they applied the TDD
approach with poor results. Only 7.8 percent of the code had associated unit tests.
While the results remain inconclusive with regard to concrete benefits of TDD, the
lessons learned from this case study bear important implications for developers and
business managers. These implications are addressed.

The remainder of the paper is organized as follows. The next section introduces
briefly the test-driven development approach including a review of the existing
empirical body of evidence. This is followed by the description of the empirical
research design. The fourth section presents the results of the empirical case, which is
followed by discussion on the implications of the results and lessons learned.

Abrahamsson et al./Test-Driven Development 3

2 TEST-DRIVEN DEVELOPMENT

Test-driven development is a programming technique where tests are written before
the actual program code (Astels 2003). TDD is an incremental process (Figure 1). First
a test is added and then the code to pass this test is written. When the test is passed the
code is refactored. Refactoring is a process of making changes to existing, working
code without changing its external behavior (Fowler 1999), i.e., the code is altered for
the purposes of commenting, simplicity, or some other quality aspect. This cycle is
repeated until all of the functionality is implemented.

The practitioner literature on TDD (e.g., Astels 2003; Beck 2003) identifies several
potential benefits that can be gained by the application of the programming technique.
These benefits are

• Give the developer confidence that the created code works
• Allow efficient refactoring through an extensive safety net
• Enable fast debugging through a test suite that helps to pinpoint defects
• Improve software design by producing less coupled and more cohesive code

Figure 1. Steps in Test-Driven Development
(adapted from Astels 2003; Beck 2003)

4 Part #: TItle

• Enable safer changes
• Create up-to-date documentation on the code
• Help developers avoid over-engineering by setting a limit on what needs to be

implemented

Every time the tests pass, the developer gets a small dose of positive feedback,
making the programming more fun. The unit tests in TDD have three distinct parts:
setup, exercise the functionality, and check for postconditions (Astels 2003). The tests
are collected into test classes to make running and maintaining the tests easier. TDD
relates to refactoring in two ways: after the code is written, the refactoring is used to
clean up the code, and when refactoring, the extensive test set built with TDD helps the
developer gain certainty that the refactoring did not break the system.

According to quantitative data from recent studies (Edwards 2004; George and
Williams 2003; Langr 2001; Maximilien and Williams 2003; Müller and Hagner 2002;
Pancur et al. 2003; Williams et al. 2003; Ynchausti 2001), TDD appears to produce
higher quality systems but also to increase the development time. A high test coverage
is easier to achieve with TDD than with the traditional techniques. TDD forces
developers to write unit tests, because the tests are such an essential part of the
development that they cannot be left out. The empirical evidence found in the literature
shows that the amount of tests in TDD varies from 50 percent less test code than
production code to 50 % more test code than production code.

Table 1 summarizes the quantitative empirical body of evidence on test-driven
development. Table 1 is divided into five columns, based on the type of finding: TDD
versus traditional testing, productivity, quality, test coverage, and ratio of production
code versus test code.

Qualitative data from TDD studies (Barriocanal and Urban 2002; Beck 2001;
Edwards 2004; George and Williams 2004; Jeffries 1999; Langr 2001; Kaufmann and
Janzen 2003; Maximilien and Williams 2003; Müller and Hagner 2002; Pancur et al.
2003; Rasmusson 2003; Williams et al. 2003; Ynchausti 2001) indicate that the test suite
produced brings value a system throughout its lifetime. This is due to the fact that the
changes are safer to implement in any phase of the system’s life cycle. TDD also
changes manual debugging to the more-structured task of writing tests. However, TDD
is not easy; many developers have prejudices against the practice.

Empirical literature shows that TDD is difficult to use and that it increases the
workload of developers, causing them to write less-functional code. These prejudices
can be fought with training and support, especially in the beginning of the adoption of
TDD. If support is not provided, it is likely that the TDD practice will not work. It also
seems that TDD is not suitable for all kinds of development environments; it is highly
dependent on the testing framework and requires that the developers using it be
motivated and skilled.

Table 2 summarizes the qualitative empirical body of evidence on test-driven devel-
opment. The first column in Table 2 indicates if a particular finding provides qualitative
support (i.e., symbol “ ”) for the application of TDD. Symbol “ ,” on the other hand,
indicates that the finding offers qualitative evidence against TDD. An empty space
refers to “neither.” This means that a particular finding provides a deeper understanding
on a particular aspect with respect the use of TDD in certain environments.

Abrahamsson et al./Test-Driven Development 5

Table 1. Quantitative Empirical Body of Evidence on Test-Driven Development
T

yp
e

of
 S

tu
dy

,
R

ef
er

en
ce

T
D

D
 v

er
su

s
T

ra
di

tio
na

l T
es

tin
g

Pr
od

uc
tiv

ity

Q
ua

lit
y

T
es

t c
ov

er
ag

e

R
at

io
 o

f P
ro

du
ct

io
n

C
od

e
ve

rs
us

 T
es

t C
od

e

TDD versus tradi-
tional, (Langr 2001)

33% more
in tests
TDD

– – – 50% more
tests than
code

TDD versus ad hoc
testing, (Maximilien
and Williams 2003)

No unit
tests in ad
hoc testing

Minimal
impact on
productivity
in TDD

50 % lower
defect rate
in TDD

– 50% less
tests than
code

TDD versus
traditional (Edwards
2004)

– – 45% fewer
defects in
TDD

– –

TDD versus
traditional
(Williams et al.
2003)

52% fewer
tests in
TDD

Same
productivity
in both

40% lower
defect rate
in TDD

– 50% less
tests than
code

TDD versus
iterative test last
(Pancur et al. 2003)

– – – 92.6 %
combined

–

TDD versus
waterfall, (George
and Williams 2003)

No unit
tests in
waterfall

TDD took
16 % more
time

TDD
passed 18%
more black
box tests

98%
method,
92%
statement
97% branch

–

TDD versus
traditional
(Ynchausti 2001)

No unit
tests in
traditional

TDD took
60 – 100%
more time

38 – 267%
fewer
defects in
TDD

– Equal
amount of
test and
code LOC

TDD versus
traditional (Müller
and Hagner 2002)

– “Slight
increase on
used time in
TDD”

“Slight
increase on
reliability in
TDD”

– –

6 Part #: TItle

Table 2. Qualitative Empirical and Anecdotal Body of
Evidence on Test-Driven Development

Result Reference
The vast test set that comes with TDD helps to refactor
with confidence that the code works.

George and Williams 2004;
Langr 2001

TDD developers are more confident in their code. Edwards 2004; Kaufmann
and Janzen 2003; Pancur et
al. 2003

Test set created via TDD will continue to improve the
quality of the system throughout its lifetime.

Maximilien and Williams
2003; Williams et al. 2003

Adding new functionality to the system built with TDD
was easier than to a traditionally built system.

Langr 2001; Maximilien and
Williams 2003; Williams et
al. 2003

TDD produces more testable code, because there is a
test already written for it.

George and Williams 2003;
Langr 2001

In TDD, the unit testing actually happens, it cannot be
left out because it is an essential part of the
development.

George and Williams 2003;
Maximilien and Williams
2003

Most developers thought that TDD improves
productivity and is effective.

George and Williams 2003

The developers’ time is more efficiently used writing
unit tests than manual debugging.

George and Williams 2004;
Williams et al. 2003;
Ynchausti 2001;

Resistance at first to use TDD due to inexperience and
growth in the amount of work.

Maximilien and Williams
2003; Müller and Hagner
2002

Developers thought that because of writing tests they
had time to write less functionality.

Pancur et al. 2003

Nearly half of the developers thought that TDD faces
difficulty in adoption.

George and Williams 2003

TDD training can be used to overcome negative
impressions of the TDD practice.

Ynchausti 2001

When no support for TDD was available, inexperienced
developers slipped back to no unit testing development,
support at least in the early stages is needed.

Jeffries 1999; Rasmusson
2003

Given a chance, only 10 percent of students wrote unit
tests.

Barriocanal and Urban 2002

The TDD group produced insufficient unit tests. Kaufmann and Janzen 2003
If the tests are not automated, they are less likely to be
run.

Maximilien and Williams
2003

Graphical user interfaces are hard to build with TDD. Beck 2001
Writing test cases for hard-to-test code requires skill and
determination from the developers.

George and Williams 2004

Abrahamsson et al./Test-Driven Development 7

3 EMPIRICAL RESEARCH DESIGN

3.1 Research Method

The research approach used in this study contains elements of case study research
(Yin 1994), action research (Avison et al. 1999) and experimentation (Wohlin et al.
2000). This type of specific approach has been labeled as the controlled case study
approach (Salo and Abrahamsson 2004). The term controlled is used intentionally.
Empirical studies include various forms of research strategies (Basili and Lanubile
1999). Controlled is most often associated with the experimentation approach. One
central difference between the research strategies is the level of control. Following
Wohlin et al. (2000, p. 12), “experiments sample over the variables that are being
manipulated, while the case studies sample from the variables representing the typical
situation.” If this is accepted, the experimentation approach can be seen as “a form of
empirical study where the researcher has a control over some of the conditions in which
the study takes place and control over the independent variables being studied” (Basili
and Lanubile 1999, p. 456). Therefore, the use of term controlled in this type of study
approach implies that the researchers were in a position to design the implementation
environment, i.e., the typical situation (see the next subsection on research setting),
beforehand. The developers in this case study developed the product in VTT’s labora-
tory setting close to the researchers.

3.2 Research Setting

A team of four developers was gathered to implement a mobile application for
global markets. Three of the four developers were fifth or sixth year university students
with industrial experience in software development. One of the developers was an
experienced industrial developer. The team worked in a colocated development
environment and used a tailored version (i.e., tailored to meet the needs of mobile
software development) of the eXtreme Programming method. This paper focuses on one
aspect of the used approach, the test-driven development technique.

The project was supported and monitored by a support team in which two of the
authors participated. The supporting tasks for TDD consisted of constructing the TDD
approach for mobile Java-enabled devices, providing training for the use of the
approach, following the TDD process during the project, and assisting in possible
problem situations. One of the authors followed the TDD on a biweekly basis and
informally discussed the results with the team. On one occasion, one of the authors
facilitated the team by participating in test code development, with the goal of providing
the team a hands-on example on how the team’s TDD practice could be improved.

3.3 Data Collection

Both quantitative and qualitative data were collected. Table 3 indicates the type of
data collected, the rationale for its collection, and the interval when it was collected.

8 Part #: TItle

Table 3. Collected Quantitative and Qualitative Data
Collected Data Rationale Type Collection Interval

Lines of code Ratio of Test
LOC/Application
LOC (%)

Quantitative After each iteration

Effort use Test development
effort used/Applica-
tion development
effort used (%)

Quantitative Daily

Productivity LOC/hour Quantitative Daily
Structured team
interview

Team perception of
the use of TDD

Qualitative After the project

Post-iteration
workshop (Salo 2004)

Team perception.
Note, a process
improvement
mechanism (not only
TDD issues)

Qualitative After each iteration

Research notes Research ideas,
observational findings

Qualitative Daily, during the project

The support team validated the data on a daily or weekly basis, depending on the
type of data collected. The purpose of evaluating the effort used for developing tests
compared with the effort used in developing the application code is to provide a metric
on how much the approach is used in the project.

The qualitative data is collected from three sources: the team interview, post-
iteration workshops, and the research notes. The structured interview (recorded and
transcribed) was conducted after the project. One of the authors kept systematic
research notes with his observations throughout the project. The purpose of collecting
qualitative data is to find out if there is a correlation between qualitative and quantitative
data collected in the project.

4 CASE STUDY RESULTS

4.1 Case Project Overview

The aim of the project was to produce a production monitoring application for
mobile Java devices. The product is an added-value service for the existing production
planning system that enables a salesperson to visually view the state of the production
anywhere, anytime. The mobile Java application is based on a similar application
running on the desktop environment. The project, therefore, aimed at transforming the
existing product to a mobile environment with reduced functionality. The limited
resources of the mobile devices, however, forced the mobile Java application to act as
a browser for the existing data. The application was written in Java 2 Micro Edition,
using the MIDP 2.0 profile.

Abrahamsson et al./Test-Driven Development 9

53 27 19 0
109

1066

681

541

155
222

0

200

400

600

800

1000

1200

1 2 3 4 5
Iteration

LOC

New client test
code

New client
application code

53 27 19 0
109

1066

681

541

155
222

0

200

400

600

800

1000

1200

1 2 3 4 5
Iteration

LOC

New client test
code

New client
application code

Table 4. The Lines of Code for the Client, Server and the Whole Application

Test code
Application

Code
Total
Code

% of Tests from
Application

Client 208 2665 2873 7.8
Server 78 972 1050 8.0
Total 286 3637 3923 7.9

The project was conducted in the spring of 2004. The total duration of the project
was nine weeks, which includes a system test and fixing phases. The project was
divided into five iterations, starting with a 1-week iteration, which was followed by
three 2-week iterations, with the project concluding in a final 1-week iteration.

4.2 Quantitative Results

This subsection presents the quantitative results of the case study. Table 4 presents
overall data on the application, in terms of the total test and application lines of code for
the client, the server and the whole application, including the percentage of test lines of
code from the application lines of code. Table 4 highlights the fact that the level of test
code is very low.

Figure 2 presents the correlation between test code and application code measured
in lines of code on the client side of the application, where TDD was intended to be
used. The tools used for the development of the server did not enable the use of TDD,
and therefore, the server is excluded from the subsequent analysis. The data is presented
by iteration and measured by lines of code.

Figure 2. Correlation Between Test Code and Application Code

10 Part #: TItle

Loc/hLoc/h

50 60 0

1080

4287 4280

3150

845

250400

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5
Iteration

Minutes

Time used on test-
code development

Time used on
application-code
development

50 60 0

1080

4287 4280

3150

845

250400

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5
Iteration

Minutes

Time used on test-
code development

Time used on
application-code
development

Time used on test-
code development

Time used on
application-code
development

Figure 3. Total Productivity in the Case Project

Figure 4. Correlation Between Test-Code Development Time
and Application-Code Development Time

As it can be seen in Figure 2, the amount of test code compared to the application
code is significantly smaller. The total productivity (Figure 3) is lower in the short
iterations (1 and 5) and higher in the longer iterations, however, it drops toward the end
of the project. The test code productivity follows roughly the same pattern: in the first

Abrahamsson et al./Test-Driven Development 11

iteration, some test code is written, the maximum productivity is reached on iteration 2,
and the amount of test code drops from there, leading to the last iteration which did not
produce any test code at all.

Figure 4 presents the correlation between the test code development time and the
application code development time. Contrary to the lines of code metric, the use of time
metric is presented on the level of the whole application. The data is presented by
iteration and measured by minutes used in the respective development modes.

Similar to Figure 2, the amount of time used on test-code development is signi-
ficantly smaller than the time used in application-code development. The time used on
application-code development is shorter in the first and fifth of the 1-week iterations
than in the 2-week iterations. The largest amount of time was used for application-code
development in the second iteration, and the time drops from there toward the end of the
project. The time used on test-code development follows the same pattern as the time
used in application-code development: In the beginning of the project, the most time
was used for test-code development, and the time used drops from there to the last
iteration, where no time was used on the test-code development. The total percentage
of time used in test-code development is 5.6 percent.

4.3 Qualitative Results

During the project, the researchers perceived that the developers did not seem to see
the benefit of the tests; they regarded them more as a burden. The fact that the team did
not see the benefit of the tests was realized, for example, on one occasion when the team
used two hours to debug the application without running the tests. Afterward, a member
of the team commented that if they had run the tests, they would have caught the defect.
The team’s attitude toward TDD was also seen in the fact that the developers easily
slipped into working in the traditional mode of developing software first and forgetting
the tests until the end of the development. Comments included

I don’t think that we could have found faults [with TDD tests] that we could
not have found otherwise.

We just thought that the tests do not offer us any advantage.

The TDD practice clearly had some difficulties in adoption. The team had some
negative impressions about it, but they also admitted that some of the reasons for not
using TDD were their own.

The whole TDD practice, where you write tests before the program code, is
stupid.…The amount of tests will grow so large there is no sense in that.

Maybe we should have been forced to do the tests.

The limited physical resources on the client end of the application developed in the
project forced the mobile application to act as a browser for the existing data. The

12 Part #: TItle

application followed the client-server model, and because of the lack of the physical
resources on the client end of the application, most of the data processing was done on
the server side. So the client’s main function was to act as a user interface for the server
side. This creates difficulty, which also came up in the team interview.

TDD is not easily applicable to…user interface development and that is just
what we are doing. We had very few things to which it would have suited
naturally.

During the project, the researchers became concerned about the low number of test
code lines and tried to promote the use of TDD by making the TDD process easier for
the developers. One of the authors asked the team if the approach used in the project
should be made easier to use. The improvement consisted of making running the tests
easier by automating the code changes needed in the main class of the application. The
team did not see this as being necessary and claimed that the current way, where the
changes had to be done by hand every time the team needed to change between TDD
and running the application, was effective enough. The team was under delivery
pressure as well.

Yet, as stated before, the team was inexperienced with TDD. They thought that
they could have achieved better results if they had had more time to get acquainted with
the practice and possibly had more support while developing

This was the first time for all of us to try TDD. We probably would have been
more capable of using the practice if we had used it previously to develop
something [for which] it is better suited.

Maybe if we had a bit longer time to do the training we could have been more
capable of using TDD.…Also if a member of the support team would have
been with us while developing, it would have helped us to do TDD.

Although the team considered that TDD had difficulties when developing this kind of
application, they felt that it could provide advantages in a different kind of application
area

TDD could save time at later development phases when adding functionality
to application; the developer could use the tests to see if it broke the existing
functionality.

I think TDD is good for testing logic…test set could be run to verify if the
application broke or not.

The qualitative findings offer interesting results. While the team observed that
TDD could provide them some help, they were not very keen in utilizing the practice if
not made mandatory. Even when the research team proposed a significant improvement
opportunity for the TDD approach in mobile environment, the team refused to give it a
try. Yet, the team conceived the TDD practice was useful with testing the logic and
verifying the functionality of the software.

Abrahamsson et al./Test-Driven Development 13

5 DISCUSSION

Technical agile solutions, such as TDD, are designed for the type of volatile
development environment presented in this study. However, as the results show, this
study is inconclusive with regard to the concrete benefits of TDD. We cannot, therefore,
determine whether TDD positively or negatively affected the software development.
Yet, the project was a remarkable business success, producing a fully marketable mobile
application in a very short time frame. Our findings are of importance for practitioners
who aim at using agile solutions in their development settings as well as for researchers
who conduct case studies and experiments in the area. In the following, the results are
mapped against the existing empirical body of evidence, after which the implications in
terms of concrete lessons learned during the study are addressed.

5.1 Mapping the Results to Existing
Empirical Body of Evidence

TDD studies have shown that TDD projects generally produce somewhere from 50
percent less to 50 percent more test code than application code (Langr 2001; Maximilien
and Williams 2003; Williams et al. 2003; Ynchausti 2001). In this study, the ratio was
only 7.8 percent. This could also indicate that TDD is poorly applicable for the mobile
Java environment due to technical challenges. Yet, the particular approach designed for
this study was pre-tested by the research team and found feasible. More importantly,
the low amount of test code can be explained by observing the qualitative data, where
the development team clearly indicated reluctance for adoption of TDD for actual use,
due to reasons of difficulty, inexperience, and application domain. In particular, the
developers expressed that TDD was not suitable the kind of application that the project
involved (i.e., a browser type with a strong focus on user interfaces). TDD authors have
brought this up earlier (e.g., Beck 2001). Prior experience in unit testing generally, and
TDD in particular, has been found to contribute to the adoption rate. Our study is in line
with these findings. The development team had not been exposed to test-first design or
development prior to the project. George and Williams (2004) also propose that the
adoption of the TDD practice requires determined and skilled developers.

In terms of effort used, results show that in the first iteration, the team used up to
30 percent of effort for TDD. This dropped quickly in the subsequent iterations.
Qualitative evidence points out that the team found TDD provide them little or no added
value, for the to reasons explicated above. It should be noted that the server side of the
software was developed in the desktop environment, and the team used JUnit as the
testing tool in that project. Although having a different, more sophisticated tool for
TDD available, the team still did not manage to produce tests.

5.2 Lessons Learned

Half way through the case project, the research team realized that the TDD
technique was not going to be systematically used within the project. Some measures

14 Part #: TItle

(i.e., extra training and mentoring support) were used to ease the adoption of the
technique but, as the results show, the situation was not improved. Therefore, it is
important to understand the reasons for the reluctance to adopt the TDD technique in
practice.

5.2.1 Lack of Motivation

A proper use of TDD requires that developers write about the same amount of test
code as actual production code. Therefore, it requires a lot of motivation and discipline
to author the extra code in a tightly scheduled project. Clearly, our developers
acknowledged the extra work needed to be done, but did not see the benefits of TDD.
One reason for this may have been the fact that the developers did not have to live
through the maintenance phase of the product, where new features would be added
without breaking the existing solution. In addition, the developers perceived the quality
issues as being of less importance in such a small project.

It would have been possible to put more pressure on the team with regard to the use
of TDD per se. Yet, the project was under business delivery pressure and the end
product was their primary concern, as is the case in industry. Moreover, we find that
motivation to use and acceptance of a new technology should emerge from use and
actual benefits. In our case, the team did not achieve an early victory with the process
innovation, which hindered effectively further application opportunities.

5.2.2 Developers’ Inexperience

The development team spent a considerable amount of time in solving technical
issues related to the mobile development environment and programming solutions (i.e.,
use of architectural patterns, threads, etc.). Only one of the team members was an expert
in mobile Java programming. Moreover, the application domain was filled with domain-
specific details with regard to production planning system operations. Experience with
these issues would most likely have eased the adoption of the test-driven mind set. TDD
is also a personal-level development practice and, therefore, may be more difficult to
adopt than other agile development techniques such as rapid release cycles, agile
modeling, and constant communication. The learning curve appears to be steeper in the
case of TDD than in the other agile practices. While the team used a so-called green
field approach (i.e., they adopted many agile techniques at once), it may well be that the
project’s time-frame was too tight for the most difficult practices. A more effective
strategy would have been to introduce fewer new techniques on a first-of-a-kind project
and recommend TDD on the following projects, when the developers would be more
experienced with the other new development techniques.

5.2.3 Immature Development Environment for TDD

The TDD method relies on using an extensive set of tests that are constantly
executed during development. It must be possible to run the test suite automatically
without too much effort. The tools for implementing TDD in the case project’s

Abrahamsson et al./Test-Driven Development 15

development environment were found to be immature. In addition, the development
included significant user interface implementation, an area where the tools for executing
TDD are only beginning to come into more general use.

5.2.4 Absence of a Mentor

A brief basic training of the concepts of TDD was provided prior to project launch.
This turned out to be an overly optimistic approach for introducing a new technique in
practical terms. TDD is not learned in a one-day course. We suspect that mastery of the
technique requires several months of intense use. For a short project, such as the case
study presented here, where developers were not familiar with the technique, a mentor
within the project team is required. Constant advice and motivation from the mentor
would have eased use, even in times when resistance occurred.

6 CONCLUSIONS

The mobile telecommunications industry has proved to be highly competitive,
uncertain, and dynamic environment. Industries operating in such a turbulent market-
place is particularly interested in trying out technical agile solutions. This study
reported the results of a case study, where a development team attempted to use test-
driven development in a mobile development environment with little success.
Nevertheless, the project was highly successful in the business sense.

For business managers and others, this study bears important implications. In
particular, this study points out that the adoption of a certain agile technique or approach
is not a straightforward, silver-bullet solution. Business managers should stay alert in
the midst of the hype before mandating the use of agile solutions in their organizations.
Developers should keep their heads up as well. This case has demonstrated that very
few if any of the technical agile solutions can be adopted and used without proper,
systematic software process improvement tactics. While this study fails to provide
empirical evidence either for or against test-driven development, it highlights the
obstacles hindering adoption. We believe that the results of our study are applicable in
other environments and agile techniques. Agile improvements at the technical level
require as careful planning and follow-up as any other software engineering innovation.
An interesting avenue for future research would be the use innovation theories, such as
León’s (1996) innovation adoption profiles, to analyze the adoption of agile solutions
in practical settings. Concrete empirical evidence should still be collected, however.

This study maintains that business agility cannot be achieved without considering
all organizational levels, including development teams and personnel. Software
engineering research and practice has produced technical solutions, which have been the
focus of this paper. Information systems research is likely to provide the needed
extension to the organizational and interorganizational levels. Yet, even low-level agile
changes are not easily implemented. We plan to continue the validation of agile
solutions in future case studies.

16 Part #: TItle

REFERENCES

Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. Agile Software Development Methods:
Review and Analysis, Espoo, Finland: Technical Research Centre of Finland, VTT
Publications 478, 2002 (available online at http://www.vtt.fi/inf/pdf/publications/2002/
P478.pdf).

Abrahamsson, P., Warsta, J., Siponen, M. T., and Ronkainen, J. “New Directions on Agile
Methods: A Comparative Analysis,” in Proceedings of the 25th International Conference
on Software Engineering, Los Alamitos, CA: IEEE Computer Society Press, 2003, pp. 244-
254.

Astels, D. Test-Driven Development: A Practical Guide, Upper Saddle River, NJ: Prentice Hall,
2003.

Avison, D., Lau, F., Myers, M., and Nielsen, P. A. “Action Research,” Communications of the
ACM (42:1), 1999, pp. 94-97.

Barriocanal, E. G., and Urban, M.-A. S. “An Experience in Integrating Automated Unit Testing
Practices in an Introductory Programming Course,” ACM SIGCSE Bulletin (34), 2002, pp.
125-128.

Basili, V. R. , and Lanubile, F. “Building Knowledge through Families of Experiments,” IEEE
Transactions on Software Engineering (25), 1999, pp. 456-473.

Beck, K. “Aim, Fire,” IEEE Software (18:5), 2001, pp. 87-89.
Beck, K. “Embracing Change with Extreme Programming,” IEEE Computer (32:10), 1999, pp.

70-77.
Beck, K. Test-Driven Development: By Example, New York: Addison-Wesley, 2003.
Boehm, B., and Turner, R. Balancing Agility and Discipline: A Guide for the Perplexed,

Boston: Addison-Wesley, 2003.
Edwards, S. H. “Using Software Testing to Move Students from Trial-and-Error to Reflection-in-

Action,” in Proceedings of the 35th SIGCSE Technical Symposium on Computer Science
Education, New York: ACM Press, 2004, pp. 26-30.

Fowler, M. Refactoring: Improving the Design of Existing Code, Boston: Addison Wesley
Longman, 1999.

George, B., and Williams, L. “An Initial Investigation of Test Driven Development in Industry,”
in Proceedings of the ACM Symposium on Applied Computing, New York: ACM Press,
2003, pp. 1135-1139.

George, B., and Williams, L. “A Structured Experiment of Test-Driven Development,”
Information and Software Technology (46:5), 2004, pp. 337-342.

Jeffries, R. E. “Extreme Testing,” Software Testing & Quality Engineering (1:2), March/April
1999, pp. 23-26.

Kaufmann, R., and Janzen, D. “Implications of Test-Driven Development A Pilot Study,” in
Proceedings of the Conference on Object-Oriented Programming Systems Languages and
Applications (OOPSLA), New York: ACM Press, 2003, pp. 298-299.

Lal, D., Pitt, D. C., and Beloucif, A. “Restructuring in European Telecommunications: Modeling
the Evolving Market,” European Business Review (13:3), 2001, pp. 152-156.

Langr, J. “Evolution of Test and Code via Test-First Design,” paper presented at the Conference
on Object Oriented Programming Systems Languages and Applications (OOPSLA), Tampa
Bay, FL, 2001.

Larman, C., and Basili, V. R. “Iterative and Incremental Development: A Brief History,” IEEE
Software (20), 2003, pp. 47-56.

León, G. “On the Diffusion of Software Technologies: Technological Frameworks and Adoption
Profiles,” in Diffusion and Adoption of Information Technology, K. Kautz and J. Pries-Heje
(Eds.), Padstow, Cornwall, England: TJ Press Ltd., 1996, pp. 96-116.

Abrahamsson et al./Test-Driven Development 17

Maximilien, E. M., and Williams, L. “Assessing Test-Driven Development at IBM,” in
Proceedings of the International Conference on Software Engineering (ICSE), Los
Alamitos, CA: IEEE Computer Society Press, 2003, pp. 564-569.

Müller, M. M., and Hagner, O. “Experiment About Test-First Programming,” IEEE Proceedings
Software (149:5), 2002, pp. 131-136..

Pancur, M., Ciglaric, M., Trampus, M., and Vidmar, T. “Towards Empirical Evaluation of Test-
Driven Development in a University Environment,” in Proceedings of EUROCON 2004,
Ljubljana, Slovenia, IEEE Computer Society, 2003, pp. 83-86.

Rasmusson, J. “Introducing XP into Greenfield Projects: Lessons Learned.” IEEE Software
(20:3), 2003, pp. 21-28.

Salo, O., and Abrahamsson, P. “Empirical Evaluation of Agile Software Development: A
Controlled Case Study Approach,” in Proceedings of the 6th International Conference on
Product Focused Software Process Improvement, F. Bomarius and H. Ilda (Eds.), Kansai
Science City, Japan: Springer, 2004, pp. 408-423.

Williams, L., Maximilien, E. M., and Vouk, M. “Test-Driven Development as a Defect-
Reduction Practice,” in Proceedings of the 14th International Symposium of Software
Reliability Engineering (ISSRE’03), Los Alamitos, CA: IEEE Computer Society Press,
2003, pp. 34-48.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A.
Experimentation in Software Engineering, Boston: Kluwer Academic Publishers, 2000.

Yin, R. K. Case Study Research Design and Methods, Thousand Oaks, CA: Sage Publications,
1994.

Ynchausti, R. A. “Integrating Unit Testing into a Software Development Team’s Process,” in
Proceedings of the XP 2001 Conference, Caglieri, Italy, 2001, pp. 79-83.

ABOUT THE AUTHORS

Pekka Abrahamsson is a senior research scientist at VTT Technical Research Centre of
Finland. He received his Ph.D. from University of Oulu, Finland, in 2002. His current
responsibilities include managing the AGILE-ITEA project (http://www.agile-itea.org), which
involves 22 organizations from 9 European countries. The project aims at utilizing agile inno-
vations in the development of embedded systems. His research interests are currently focused
on the development of mobile information systems, applications and services, business agility and
agile software production. He has coached several agile software development projects in
industry and authored more than 40 scientific publications focusing on software process and
quality improvement, commitment issues, and agile software development. He is the principal
author of the Mobile-D methodology for mobile application development. Pekka can be reached
at Pekka.Abrahamsson@vtt.fi.

Antti Hanhineva is a software designer at Elbit Oy in Finland. He received his M.Sc. from
University of Oulu, Finland, in 2004. Prior to joining Elbit, he worked at VTT Technical
Research Centre of Finland. While at VTT he coached several projects on test-driven develop-
ment and testing related issues in mobile development environments. He is a coauthor of the
Mobile-D methodology for mobile application development. Antti can be reached at
antti.hanhineva@elbit.fi.

Juho Jaalinoja is a software engineer at Nokia Technology Platforms. Prior to joining
Nokia, he worked as a research scientist at VTT Technical Research Centre of Finland. His
research areas include software process improvement and agile methods. He received his M.Sc.
in Information Processing Science from University of Oulu, Finland, in 2004. Juho can be
reached at Juho.Jaalinoja@nokia.com.

