

The Use of Architectural Patterns in the
Agile Software Development of Mobile Applications

Tuomas Ihme, Pekka Abrahamsson
VTT Technical Research Centre of Finland,
 P.O.Box 1100, FIN-90571 Oulu, Finland

ICAM 2005

Abstract: Architectural design patterns capture proven solutions of skilled designers to many recurring design problems. However, these
patterns may lead to large solutions and overengineering, which are considered alarm signals from the viewpoint of agility . This paper reports
the results of two case studies focusing on the adoption of architectural design patterns in agile development of mobile applications for real
markets. The Agile Architecture Line Approach and Model were applied in the case studies. The used approach and model strive for a light
and robust architecture design framework for mobile applications and services. In this approach, current architectural knowledge concerning
available patterns and solutions will be captured during the Architecture Line Definition phase taking place before production. Based on the
experience gained from the first case project, more emphasis was laid on capturing the current architectural knowledge about the patterns and
solutions proven useful and effective in similar applications running on the used platform. The patterns are augmented before production with
suitable supporting information so as to enable them to help inexperienced designers to improve the quality of mobile applications developed
in nine-week agile projects in concordance with agile values. This paper demonstrates empirically that architectural design patterns can help
to develop viable software architectures and to document them in a useful way, as applied in the challenging context of tough time-to-market
demads, the mobile development environment and the J2ME platform. This paper further shows that pattern-based rationale of design
decisions and architectural components can be a key success factor in designing mobile software and improving its quality. The empirical
results of this paper are presented in a manner enabling practitioners to utilize the proposed solutions in similar projects.

Keywords: Agile methodologies; Architectural patterns; Extreme programming; Mobile software; New product development

1. Introduction

Agile software development solutions [for an overview, see
1]can be seen to provide a good fit for the mobile application
environment due to its high volatility and tough time-to-
market demands. Mobile applications are generally quite small
and majority of them are developed by small software teams.

While, so far, mobile commerce applications have not been
very successful, telecommunications companies believe that
the situation will change in the near future. This would lead to
a widespread adoption of mobile services in combination with
mobile commerce applications [2]. At present, basically
anyone with the required skills can develop applications for
mobile terminals thanks to open platform technologies such as
Symbian and Java.

The few published articles on mobile software
development argue for the existence of specific design
challenges compared to traditional desktop applications
development [3-5]. This study focuses on agile development
of mobile applications from the viewpoint of using
architectural design patterns.

Architectural design patterns [6-8] describe the expertise
of experienced developers on solving recurring architectural

design problems in specific design contexts. It has been
argued that patterns help developers to create new software
more effectively, while simultaneously maintaining a high
quality of developed software. Furthermore, patterns are most
effective when they enhance communication not only among
designers but also between designers and other project
stakeholders.

Agile software development relies on a defined set of
values and principles guiding the development (see
www.agilemanifesto.org). The principles and values
motivating agile modeling practices, as drawn from the Agile
Manifesto, have been presented by Ambler [9]. Similarly, the
documentation of patterns is motivated by a set of values [10].
There are several similarities between the values stated by the
promoters of agile solutions and those shared by the pattern
authors. Contrary to a common belief that agile software
development neglects the viewpoint of architecture
development, many agile experts call for explicit attention to
good design and architecture early in the development [e.g.,
11, 12].

Many patterns represent the bottom-up engineering-
oriented type. Examples of such patterns can be found in [6],
[7] and [8]. They can be used to provide restructuring targets

© 2005 ISAM

Architectural Patterns in the Agile Software Development of Mobile Applications

in agile refactoring [13] activities for enhancing software
modularity, maintainability, and reusability [6, 14].

The adoption of patterns has, however, proven difficult [6,
8, 15]. Only few patterns describe the architectural expertise
of experienced mobile software developers [8] and there are
only some publications available discussing examples and
experiences of applying trusted general-purpose patterns in the
construction of mobile applications. Kerievsky [16] argues
that “unless people devote significant study to patterns, they
will be in danger of misunderstanding them, overusing them,
and overengineering with them.” In eXtreme Programming
(XP), patterns are most useful when people are familiar with
them and use them in a disciplined XP way. Patterns are often
implemented in their most primitive forms in early design
phases and these implementations are altered or upgraded later
[16].

The pattern-specific guidelines of pattern descriptions are
insufficient for applying patterns in building complex real-
world software architectures [8, 15]. The pattern descriptions
fail to address the integration of patterns into a partial design,
the combination of patterns to larger design structures, the
application order of a given set of patterns, and the resolution
of problems that cannot be solved by a single pattern in
isolation [15]. Some pattern collections, e.g., [6-8], include
useful but collection-specific pattern selection procedures.

This paper addresses the challenges introduced above and
reports the results of two case studies where a mobile service
and a mobile extension to an existing pc-based information
system was developed. Both case projects used an agile
software development approach called Mobile-D [17], which
is based on XP practices. This paper focuses on the adoption
of architectural design patterns in a situation where the
developers are not familiar with related concepts, which can
be seen as a common situation in mobile development
environments.

The paper is organized as follows. The next section
introduces the research design of the study. The paper
continues with a summary of the supporting material of the
case projects for the adoption of architectural design patterns.
The main findings of the cases is then presented. Finally, some
conclusions are drawn.

2. Research Design

Developing mobile applications is a challenging task due to
the specific demands and technical constraints of mobile
development. Very little is known about the use of
architectural patterns a) in agile software development of b)
mobile software systems from the practical viewpoint.

Mobile-D, an agile software development approach [17]
based on the practices of eXtreme Programming, or XP, which
is the best known agile method [11], is one of the pioneer
approaches for mobile application development. The
predecessor project [for details, see 18] for the case studies of
this paper, i.e. the zOmbie and bAmbie projects, also showed
that no patterns can found or utilized in 8-week Mobile-D

projects without any support for the adoption. Due to these
issues, the Mobile-D approach and two case projects were
selected for studying if architectural design patterns could be
used in the development of mobile applications for improving
software architecture.

2.1 Research setting

 Agile Architecture Line Model

The Agile Architecture Line Model in Figure 1 provides the
design and documentation context and process phases for
adopting the architectural patterns in the case projects. Figure
1 presents the Architecture Line Model from the viewpoint of
systematic piecemeal growth of architectural design and
documentation in the different phases of the Mobile-D
process. Architectural patterns represent one form of creating,
understanding, communicating, and documenting viable
architectural solutions.

The Agile Architecture Line Model [originally introduced
in 19] strives for a light and robust architecture design frame
for mobile applications and services. It aims at producing
maintainable and expandable products with trusted
infrastructures. The Architecture Line concept involves
selecting and using architectural design patterns in a
systematic manner over the course of agile projects. It relies
on agile values and principles and attempts to mitigate the
risks of overengineering in tough time-to-market development
environments.

Core
architectural
abstractions

Structural
models

Structural
models

Rationale
for design
decisions

Rationale
for design
decisions

Architecture
line plan

Architecture
and Design
Document

 Document
template

Architecture
line

definition

...Phase -0 Phase 1 Phase n -1 Phase nPhase -1

Working
architectural

 skeleton

Mature
architectural

 skeleton

Expandable
application
software

Trusted
infrastructure

Figure 1. Agile Architecture Line Model

The growth of the architecture in an agile software

development project progresses over a series of phases. Phase
-1 includes activities performed prior to project commission
and launch. Phase 0 consists of activities related to the first
iteration of product development. Piecemeal and systematic
growth of architectural understanding progress over
subsequent phases as shown in Figure 1.

 2.1.1 Case studies

The zOmbie project team was developing a mobile service
application for active investors for an easy access to financial
services involving trading in the stock market and visualizing
real-time market data and stock exchange indexes. The
bAmbie project team was developing a mobile extension to an

Architectural Patterns in the Agile Software Development of Mobile Applications

existing production planning system enabling sales personnel
to visualize the on-line the state of factory production
anywhere in the world at any given time. The cases shared a
common development concept: “From a scratch idea to a
marketable java-based mobile application in nine weeks,
running on several mobile phone terminals”. The concept was
realized via rapid iteration cycles and very small software
releases of the Mobile-D process using the minimum-footprint
J2ME platform on client mobile phones.

The zOmbie team included five 5th to 6th year university
students and a research scientist with several years of
experience in software development but very limited
experience with the Java language and the J2ME platform.
The bAmbie team consisted of three university students and
one designer from the customer organization with no
experience of the J2ME platform but with sound knowledge of
the existing pc-based information system. None of the group
members were working in both of the teams. All the students
involved had participated in an introductory course on
software architecture and architectural design patterns prior to
the projects. The course had included a small exercise on the
use of the J2ME platform.

The development environments of the two projects were
almost identical. However, the MySQL database was used for
the stock market data in the zOmbie project and the Oracle
database for the production system data in the bAmbie project.

Both case projects involved six similar iterations or phases
of the Mobile-D process (Figure 1): Phase 0 spanned one
week, Phases 1 to 3 two weeks, and Phases 4 and 5 one week.
Both case studies required one extra enhancement iteration at
the end of the project in addition to the initial eight-week
development schedule.

The applications of the cases shared the architecturally
important key functionality of retrieving data from a database
and displaying it on mobile phone terminals. The customers in
the case projects did not specify any quality requirements for
the applications. The main difference between the cases
regarding the adoption of architectural design patterns was to
be found in the supporting material created during Phase -1
prior to the start of the case projects and its use during the
projects. The cases shared similar mobile applications, teams,
development environments, the same agile development
process, and J2ME, one of the most common platforms for
mobile applications. Accordingly, the number of disruptive
variables was very small. The zOmbie and bAmbie cases
could thus be considered appropriate for this study focusing on
the adoption of architectural design patterns in an agile
development of mobile applications.

2.2 Research method

Cunningham [20] looks upon action research as one form of
case study research. In action research, the focus is more on
what practitioners do rather than what they say they do [21].
The multiple case study research as suggested by Yin [22] is
the principal guiding research method in our study. Oquist

[23] further points out that action produces knowledge for
guiding practice, which also lays down the guidelines of this
study.

The support group of the case projects included an
experienced software architect with sound expertise in
patterns. He contributed to the study by preparing and
presenting supporting material for the adoption of architectural
design patterns during Phase -1 (see Figure 1) before the
teams started to work on the case projects. Action research
requires that reality is modified using planned interventions
[24]. The planned interventions took place between the agile
projects. Retrospective project post-mortem workshops [25]
and interviews at the end of each project were used for
capturing experiences and learning from individual projects.
This information augmented by action point lists was used for
starting improvement actions for the Agile Architecture Line
Model and for developing supporting material for subsequent
case projects.

During the case projects, Phases 0 to n in Figure 1, the
support group architect provided expert guidance on patterns
whenever needed and requested by developers and particularly
via project retrospectives. The Post-Iteration Workshop
technique [25] was used for conducting project retrospectives
after all iterations of the projects so as to improve the software
development process, also including architectural design and
documentation aspects. The support group architect did not
intentionally intervene in the case projects since the goal of
the study was to investigate whether an inexperienced team
was able to make use of provided architectural patterns if
supported by training material.

The architectural design and documentation issues,
including utilization of proposed patterns, were totally
optional for the developers due to the agile values (i.e., trust
teams and working software over comprehensive
documentation) adopted in the projects because the customer
did not require architectural issues.

The data collection involved the use of the resulting
documentation, code and design artifacts. In addition,
consultation requests from the developers, project
retrospectives conducted after iterations and retrospective
project post-mortems and interviews conducted after the end
of the projects were collected for research purposes.

2.3 Research problems

The main characteristics of the experimental setup were, as
described above:
• The development concept “From a scratch idea to a

marketable java-based mobile application in nine weeks,
running on several mobile phone terminals”,

• Inexperienced teams, and
• An agile development process with an emphasis on the

totally optional utilization of the proposed patterns.
This research aims to study if architectural design patterns

can be used for improving the software architecting process of

Architectural Patterns in the Agile Software Development of Mobile Applications

Mobile-D projects in the given experimental setup. This
general aim is divided into the following specific problems
according to the issues identified in the introduction:
• How to select and present patterns in the training material

so as to motivate and facilitate their use by the project
team?

• How can patterns help the team to create new software
effectively, while simultaneously maintaining the quality
of the developed software at a high level?

• How can patterns help the team to develop useful and
effective software architectures? Northrop [26] identifies
the following three fundamental reasons why software
architecture is important: a basis for mutual understanding,
consensus and communication among stakeholders, a
manifestation of early design decisions about a system, and
a transferable abstraction of the system. A useful
architectural model with associated documentation has to
be capable of describing adequately what the externally
visible properties and roles of the components in the
models are, the relationships among those components,
and how the components cooperate to accomplish the
purpose of the system [26].

• Are the Mobile-D approach with its agile values and the
Agile Architecture Line Model suitable to be used with
patterns?

• How can patterns be used as a documentation aid to
preserve vital design information that helps to maintain
and evolve the developed product after the project? Agile
methods generally tend to ignore problems that may occur
after a specific software product has been developed [1].

3. Supporting material for the adoption of

patterns

An experienced software architect in the support group of the
case projects was responsible for preparing supporting
material for the adoption of architectural design patterns as
well as for presenting the material during the training courses
of the project teams before the start of the projects.

3.1 The zOmbie case

 When preparing the supporting material during Phase –1, the
architect had neither enough time nor enough information
about the application idea of the zOmbie project for analyzing
the application and technology domains. Therefore, the
supporting material of the zOmbie case mainly included
general information about architectural design patterns and
their selection and also about architectural drivers. The
material included some more detailed information about the
following styles and patterns [7, 27]: the client-server style,
the tiered style, the deployment style, the module
decomposition style, and the Layers pattern. The material also
included information about Java-specific J2EE patterns along
with an example of a potential system-level architecture.

3.2 The bAmbie case

The supporting material of the bAmbie case included
information about the following styles and patterns [6, 7, 27]:
the Three-Tier-Client-Server style, the Broker pattern, the
Model-View-Controller pattern, the Proxy pattern, the Façade
pattern, the Layers pattern, the Singleton pattern, the
deployment style, and the module decomposition style.

Based on the negative experience gained from the zOmbie
case, the supporting material of the bAmbie case was
complemented by information about examples [e.g., 28] of
concrete implementations of most of the patterns on the Micro
Edition of the Java 2 Platform (J2ME) with the Mobile
Information Device Profile (MIDP). Based on these examples,
the supporting material provided a small and manageable set
of potential core abstractions for structuring each subsystem of
the system to be developed. The abstractions and their
relations resulted from the integration of pattern examples in
the supporting material. The abstractions and their relations
composed potential architectural skeletons for the system to be
developed. They were also used in the proposal for software
architecture design document template as examples of the use
of patterns in documenting the rationale of architectural
decisions and solutions.

4. Findings from the case studies

4.1 Empirical evidence of benefits: the

cyclomatic complexity

Literature has produced little empirical evidence of the
benefits of using architectural patterns in practice. In order to
shed some light on this issue, the cyclomatic complexities of
the zOmbie and bAmbie cases were calculated and compared.
As noted earlier, the difference in the analyzed cases was the
use of architectural patterns, which were used in bAmbie but
not in zOmbie.

Cyclomatic
Complexity

Risk Evaluation

1-10 a simple program, without much risk
11-20 more complex, moderate risk
21-50 complex, high risk program
greater than 50 untestable program (very high risk)

Table 1. Cyclomatic complexity values and risk of defects
(the QJ-Pro tool available from
http://checkstyle.sourceforge.net/)

Cyclomatic complexity measures the number of linearly-
independent paths through a program module. It is a measure
of the minimum number of possible paths through the source
and therefore the number of required tests. Therefore, as Table

Architectural Patterns in the Agile Software Development of Mobile Applications

1 shows, a higher cyclomatic complexity value suggests a
higher risk of defects.

Figure 2. Cyclomatic complexity of code in two projects.

Figure 2 shows that the use of design patterns can clearly
reduce program complexity. In bAmbie the client software
showed two complexity points larger than 10, while in
zOmbie this value was as great as 20. On the server side, the
difference between the respective values was not quite as
great, but in zOmbie the greatest complexity value in server
code was as large as 89, which is certainly not a desirable
result in view of the target values presented in Table 1.

4.2 Answers to research problems

The research problems in Section 2 are further divided into
more specific questions (in italics) and attached with the
answers obtained to these questions.

How can a small set of suitable and useful patterns be
pre-selected if no quality requirements are specified and only
a scratch idea about the functionality of the product is
available? The rapid iteration cycles and very small software
releases of the Mobile-D process require that the quality of the
developed software is constantly maintained at a good enough
level in terms of, for example, modifiability, testability,
expandability and integrability. Many architectural design
patterns support these kinds of quality attributes but, if not
applied carefully, they may also cause problems in terms of
performance, which must be of high level in the final
application. The results showed that the preparation of useful
pattern supporting material requires not only enough time and
sound expertise on patterns and architecting, but also specific
knowledge about the use of patterns in similar applications
running on the specified platform. This specific knowledge
can be acquired by analyzing application and technology
domains, particularly focusing on pointers to potential pattern
and architecture resources, such as pattern and style

catalogues, examples of similar applications, and typical
system and software architectures. Pattern collections such as
[6, 7] and [8] include useful but collection-specific pattern
selection procedures. Pre-applied architectural design patterns
in the example material [e.g., 28] of the J2ME platform
provider proved highly useful. The architecturally important
key functionality of the system needed to be crystallized from
the scratch idea of the products for searching examples of
similar applications. In these cases, the key functionality was
to retrieve data from a database and to display it on mobile
phone terminals.

How can selected patterns be presented in the pattern
supporting material in a manner that would make the project
team willing to utilize them? The results showed that no
patterns will be found or utilized if appropriate supporting
material for their adoption is missing. In the worst case
scenario, the teams are in danger of misunderstanding the
patterns. Thus, the adoption of patterns without any working
examples on similar problems and platform contexts is likely
to fail. The supporting material of the bAmbie case included
information about examples of concrete implementations of
most of the patterns on the used platform. These examples
enabled the supporting material to provide a small and
manageable set of potential core abstractions for structuring
each subsystem of the system to be developed. The
abstractions and their relations resulted from the example
integration of the patterns. The abstractions were also used in
a proposal for software architecture and design document
template as examples of the use of patterns in documenting the
rationale of architectural decisions and solutions. The results
showed that the teams had no time to use more than the
presented part of the supporting material.

How can patterns help the team to create new software
more effectively? The results showed that patterns in the
supporting material helped the bAmbie team to capture a
comprehensive, appropriate and understandable set of core
architectural components at the beginning of the project. This
contributed to enhanced productivity in terms of logical lines
of code per person month and better task estimation in the
bAmbie case.

How can patterns be used as a documentation aid to
preserve vital design information that helps developers evolve
software iterations more efficiently and maintain a high
quality of the developed software? Pre-defined patterns and
pattern-based core architectural abstractions in the supporting
material allowed the team to create a comprehensive and
appropriate set of core architectural components at the
beginning of the project for structuring each subsystem of the
system. The patterns and abstractions provided excellent
targets and design information for refactoring the architecture
of the system. The zOmbie case, which did not employ
patterns led to the simplest architecture at the beginning of the
project and the same architecture was maintained during the
whole project, which led to large and complex components in
the final architecture as shown in Figure 2.

20

36

5

89

2

21

3

21

0
10
20
30
40
50
60
70
80
90

CC

zOmbie without
patterns bAmbie with

patterns

Com ex methods in clientpl
code
Max CC value in client
code
Complex me ds intho
server code
Max CC value in server
code

Architectural Patterns in the Agile Software Development of Mobile Applications

How can patterns help the team to develop software
architecture descriptions that can be used as a basis for
mutual understanding, consensus and communication not only
in the project team but also among other project stakeholders
during the project? Two non-standard software models were
created during Phase 1 in the zOmbie project (Layer
Description and Composite Model). The models included a
large number of different kinds of weakly defined components
and relationships among components. These models, however,
failed to describe software architecture in a useful way [26]
for stakeholders outside the project team. The non-standard
software models of the bAmbie case on flip charts were usable
for architectural communication among stakeholders during
the development because the components in the models were
derived from high-quality core abstractions in the pattern
supporting material.

How can patterns help the team to develop software
architecture descriptions that represent the manifestation of
early design decisions? Some indications of early design
decisions, but no design rationale, regarding the partitioning of
the software system can be identified from the development
time models of the zOmbie case. The design decisions of the
software models of bAmbie on flip charts could, however, be
traced and they were also included the pattern supporting
material. Patterns encouraged the team to document also the
design decisions and rationale that were not based on the
information in the supporting material. The software
architecture descriptions in the final document represent the
manifestation and rationale of design decisions derived from
the descriptions of the used patterns.

How can patterns help the team to create software
architecture models that are transferable across successive
iterations as well as across similar systems? The Layer
Description of the zOmbie case was transferable across
successive iterations. Since the other models on flip charts and
in the final document list almost all classes in the system, they
had to be modified according to class insertions or removals.
The software models of bAmbie on flip charts were
transferable across successive iterations due to their
background of modeling examples provided by the supporting
material. The software architecture descriptions in the final
document were transferable also across similar systems, e.g.,
they could be applied to the architecture of the system
developed in zOmbie.

Is the Agile Architecture Line Model suitable for using
patterns? The results of the bAmbie project showed that
patterns could be used in the fast-cyclic Mobile-D agile
development process for new software via pre-defined pattern-
based core architectural components while simultaneously
maintaining the desired phasing and pacing rhythm of the
process. However, some problems were also encountered.
More effort and guidelines is needed for the development of
supporting material for the adoption of patterns.. The Mobile-
D process included the idea of creating a communication
channel from the cell phone to the database during the first
one-week iteration. The bAmbie project followed this idea and

ended up with run-time architecture and architectural
components that were too difficult to restructure for
integrating the Model-View-Controller (MVC) pattern [7].
The particular importance of the application order of patterns
at the beginning of the project should be emphasized more in
the guidelines of the Mobile-D process.

Are the adopted agile value of “trust teams” and
particularly the derivative application of the “trust teams”
value, the totally optional utilization of the proposed patterns,
suitable for the adoption of patterns? The Mobile-D approach
is based on XP practices. XP expects the majority of the
project team members to be on expert level. While the ‘trust
teams’ value is well suited to teams of experts, it may cause
problems for more inexperienced teams, such as those
involved in this study. Better results from the viewpoint of
using patterns and other architectural issues would have been
archived if the project team had been obligated to consult the
support group when encountering problems in the adoption of
proposed patterns and core architectural abstractions.

Is the agile value “working software over comprehensive
documentation” suitable for the adoption of patterns? All
Mobile-D projects have followed this value. The results of the
bAmbie case suggest that patterns can help and encourage the
project team to document knowledge about software
architecture in a brief and salient form [11] during the
development period and particularly in the final
documentation. The architectural documentation of the
bAmbie project was as brief as that of the zOmbie project
while simultaneously being more salient [11] in discussing the
overall architectural design rationale and focusing more on
the essential and high-level structures in the system. The agile
project teams were not too keen to document software
architectures, so it was important that patterns would support
their documentation work while not increasing their
documentation effort.

How can patterns be used as a documentation aid to
preserve vital design information that helps to maintain and
evolve the developed product after the project? Software
architecture knowledge remained tacit in the zOmbie project
and had remained tacit in its predecessor mainly due to a
common misunderstanding that the agile value of “working
software over comprehensive documentation” neglects the
viewpoint of software architecture. The software architecture
descriptions in the final documents of these projects were not
useful from the viewpoint of the criteria presented in [26].
This may cause serious problems for maintenance and further
development activities after the projects particularly in case
the project team changes. In bAmbie, quite reversely, the
high-quality pattern-based software architecture descriptions
recorded in the bAmbie final document have been used as a
basis for mutual understanding, consensus and communication
among all stakeholders after the project, including
continuation projects along with a study course work and a
university graduation thesis. This was achieved particularly
via the software architecture and design document template
proposal in the supporting material including examples of the

Architectural Patterns in the Agile Software Development of Mobile Applications

use of patterns in documenting the rationale of architectural
decisions and solutions.

5. Conclusions

This paper has argued that mobile applications are developed
in a turbulent business environment, which requires the ability
to react rapidly to changing market needs. It was suggested
that agile software development solutions are targeted for this
type of environment. Architectural design patterns describe
the expertise of experienced developers on fundamental
structuring principles of software systems and in solving
recurring design problems in specific design contexts. Very
little is known about the application of these patterns in the
context of agile development of mobile application. Empirical
evidence, experiences and lessons-learned regarding the
application of architectural patterns are in short supply. This
paper makes an attempt to shed light on these issues.

The results of the adoption of architectural design patterns
in two case studies on the development of mobile applications
have been described. The applications were developed from a
scratch idea in 9 weeks with rapid iteration cycles and very
small software releases using an XP-based agile method called
the Mobile-D as the development frame and the Agile
Architecture Line Model. of Mobile-D as the architectural
design frame. The Agile Architecture Line Model defines the
development of viable architecture solutions for mobile
software applications in a stepwise and phase-based manner.
The applications shared an architecturally important key
functionality of retrieving data from a database and displaying
it on mobile phone terminals. The team members were not
highly experienced with software architecting, the J2ME
platform, or architectural design patterns. The customer did
not require the use of patterns. Thus, the use of patterns was
optional for both of the project teams. The context, therefore,
was highly challenging for the adoption of architectural design
patterns. The difficulties faced have also been documented and
reported here.

The results show that patterns are not likely to be found or
utilized if appropriate support for their adoption is missing. In
the worst-case scenario, the teams are in danger of
misunderstanding the patterns. Thus, the adoption of patterns
is bound to fail if there are no working examples on similar
problems or platform contexts available. Software architecture
descriptions were not useful [26] in the final documents of the
zOmbie project, in which no patterns were used. The zOmbie
application was not modular enough.

The bAmbie project showed that patterns can support agile
values also in difficult adoption contexts such as those of the
case projects if the patterns have been augmented before
production with suitable information in the supporting
material. This addition captures current architectural
knowledge about the patterns and solutions that have proven
to be useful and working in similar applications running on the
same platform. The integration of the patterns resulted in a set
of potential core abstractions and their relations. This enabled

the team to make good use of patterns for developing viable
software architectures and documenting them in a useful way
and also for creating sound rationale for the trusted and high
quality architectural solutions of the project. Pattern-based
rationale of design decisions and architectural components
proved to be a key success factor in designing and refactoring
software architecture under the challenging development
concept of this study. Empirical evidence in terms of code
complexity demonstrated the impact of the use of patterns on
achieving more balanced software structures.

The augmented patterns supported agile development
values such as the Simplicity and Communication values of
Agile Modeling [9] and also the agile principle of “Continuous
attention to technical excellence and good design enhances
agility” in the context of the bAmbie project. The principle of
optional use of supporting material originated from the agile
value of “trust teams”. This caused problems in the application
order of patterns. The data and empirical material presented in
the paper serve as a useful pointer for practitioners developing
mobile applications and researchers interested in agile
development and use of architectural patterns.

The Agile Architecture Line Model has been empirically
tested in four Mobile-D case studies. The future research will
focus on industrial cases and on radical acceleration of product
development by developing agile architecture lines for series
of products and for initiating software product lines and
application frameworks.

Acknowledgements

The main research work of this paper has been carried out
within the ITEA-Agile project funded by the National
Technology Agency of Finland (Tekes) and VTT. The authors
wish to thank the zOmbie and bAmbie teams for valuable and
fruitful co-operation.

References

1. Boehm, B. and R. Turner. 2003. Balancing Agility and
Discipline, Boston: Addison-Wesley.

2. Blazevic, V., A. Lievens, and E. Klein. 2003. "Antecents
of project learning and time-to-market during new mobile
service development," International Journal of Service
Industry Management, 14(1):120-147.

3. Dahlgren, F. 2001. "Future Mobile Phones - Complex
Design Challenges from an Embedded Systems Perspective,"
Engineering of Complex Computer Systems.

4. Yoshimi, B., et al. 2002. "Lessons Learned in Deploying a
Wireless, Intranet Application on Mobile Devices," Workshop
on Mobile Computing Systems and Applications (WMCSA'02).

Architectural Patterns in the Agile Software Development of Mobile Applications

5. Konchnev, D.S. and A.A. Terekhov. 2003. "Surviving Java
for Mobiles," Pervasive Computing, (April/June):90-95.

6. Gamma, E., et al. 1995. Design patterns: Elements of
Reusable Object-Oriented Software, New York: Addison-
Wesley.

7. Buschmann, F., et al. 1996. Pattern-Oriented Software
Architecture - A System of Patterns, Chichester, England: John
Wiley & Sons.

8. Schmidt, D., et al. 2000. Pattern-Oriented Software
Architecture, Volume 2: Patterns for Concurrent and
Networked Objects: John Wiley & Sons.

9. Ambler, S.W. 2002. Agile modeling, New York: John
Wiley & Sons, Inc.

10. Schmidt, D., R. Johnson, and M. Fayad. 1996. "Software
Patterns," Communications of the ACM, 39(10):36-39.

11. Martin, R. 2002. Agile Software Development, Principles,
Patterns, and Practices, Upper Saddle River, New Jersey:
Prentice Hall.

12. Beck, K. 2000. Extreme programming explained: Embrace
change, Reading, MA.: Addison Wesley Longman, Inc.

13. Fowler, M. 1999. Refactoring: Improving the design of
existing code, Boston: Addison-Wesley.

14. Keriewsky, J. 2004. Refactoring to Patterns, Boston:
Addison-Wesley.

15. Buschmann, F. 1999. Building Software with Patterns, in
Proceedings of the Fourth European Conference on Pattern
Languages of Programming and Computing, Bad Irsee,
Germany, 8 - 10 July 1999. 1999. p. 58.

16. Keriewsky, J. 2000. "Patterns and XP," in Extreme
Programming Examined: Selected Papers from the XP 2000
Conference. XP 2000 Conference, Cagliari, Italy, G. Succi
and M. Marchesi, Editors, Addison-Wesley: New York. p.
207-220.

17. Abrahamsson, P., et al. 2004. "Mobile-D: An Agile
Approach for Mobile Application Development," Object-
oriented programming systems, languages, and applications,
Vancouver, BC, CANADA, pp. 174 - 175.

18. Abrahamsson, P. and J. Koskela. 2004. "Extreme
programming: A survey of empirical results from a controlled
case study," ACM-.IEEE International Symposium on
Empirical Software Engineering (ISESE 2004), Redondo
Beach, CA, USA, pp. 73 - 82.

19. Ihme, T. 2001. "An architecture line structure for
command and control software," 27th EUROMICRO
Conference, Warsaw, Poland: IEEE Computer Society Press,
pp. 90-96.

20. Cunningham, J.B. 1997. "Case study principles for
different types of cases," Quality and quantity, 31:401-423.

21. Avison, D., et al. 1999. "Action Research,"
Communications of the ACM, 42(1):94-97.

22. Yin, R.K. 1994. Case Study Research Design and
Methods, 2nd ed.: Sage Publications.

23. Oquist, P. 1978. "The epistemology of action research,"
Acta Sociologica, 21:143-163.

24. Susman, G.I. and R.D. Evered. 1978. "An Assessment of
the Scientific Merits of Action Research," Administrative
Science Quarterly, 23:582-603.

25. Salo, O., et al. 2004. "Self-Adaptability of Agile Software
Processes: A Case Study on Post-Iteration Workhops," 5th
International Conference on Extreme Programming and Agile
Processes in Software Engineering (XP 2004), Garmisch-
Partenkirchen, Germany: Springer.

26. Bass, L., P. Clements, and R. Kazman. 1998. Software
Architecture in Practice, Reading, Massachusetts: Addison-
Wesley.

27. Clements, P., et al. 2002. Documenting Software
Architectures, Views and Beyond, New York: Addison-
Wesley.

28. Yuan, M. 2004. Enterprise J2ME, Developing Mobile Java
Applications, Upper Saddle River, NJ: Prentice Hall.

Authors’ biographies:

Lic. of Tech. Tuomas Ihme is a senior research scientist at
VTT Technical Research Centre of Finland. His professional
experience involves several years in industry as a software
engineer and a project manager, more than 20 years
experience in development and research of embedded
software, and management of industrial development projects
as well as national joint research projects. His areas of

Architectural Patterns in the Agile Software Development of Mobile Applications

expertise are software architectures in embedded and wireless
systems, architecture design methods and tools, architecting
component software, product line architectures, and
architectural patterns. His research interests are currently
centered on agile software architectures in embedded systems.
He has authored more than thirty scientific publications
focusing on methods, tools, reusability, quality, and
architecture of embedded software.

Prof. Pekka Abrahamsson is a senior research scientist at
VTT Technical Research Centre of Finland. He received his
Ph.D. on “The role of commitment in software process
improvement” from University of Oulu in 2002. His research
interests are currently centred on agile software production,
embedded systems and mobile application development. His
current responsibilities include managing an AGILE-ITEA
project (http://www.agile-itea.org), which involves 22

organizations from 8 European countries. He has coached
several agile software development projects in industry and
authored 50+ scientific publications focusing on software
process and quality improvement, commitment issues and
agile software development. His team has developed the
Mobile-D methodology for mobile application development.
His professional experience involves 5 years in industry as a
software engineer and a quality manager.

	Introduction
	Research Design
	Research setting
	Research method
	Research problems

	Supporting material for the adoption of patterns
	The zOmbie case
	The bAmbie case

	Findings from the case studies
	Empirical evidence of benefits: the cyclomatic complexity
	Answers to research problems

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

