
Copyright IEEE. Abrahamsson, P., & Koskela, J. (2004) Extreme programming: Empirical results from a controlled case study,
ACM-.IEEE International Symposium on Empirical Software Engineering (ISESE 2004), Redondo Beach CA, USA

Extreme Programming:
A Survey of Empirical Data from a Controlled Case Study

Pekka Abrahamsson and Juha Koskela

VTT Technical Research Centre of Finland
P.O. Box 1100, FIN-90571 Oulu, Finland
{pekka.abrahamsson; juha.koskela}@vtt.fi

Abstract

Extreme programming (XP) is a well known agile
software development method. While a number of
experience reports have been published in recent years,
agile software development in general and XP in
particular have strongly been criticized for the lack of
empirical data. This paper reports a survey of the
empirical data obtained from a controlled case study on
extreme programming in practical settings. Thus, no
hypotheses were set a priori. Four software engineers
were acquired to implement a web-based system (7698
Locs, 820 hours) for data management in a delivery
schedule of eight weeks. Development environment was
close to the agile home ground. Collected empirical data
is grounded on three basic data points: Time, size and
defects. Data is organized around five system releases,
each which were tested by 17 customer testers. System
release defect-density was 1.43 defects/KLOC, team
overall productivity 16.90 Locs/hour and rework costs
were 9.8% of the total development effort. The
implications of this study are discussed.

1. Introduction

Agile methods and principles have gained a significant
amount of attention in the field of software engineering in
just few years. The roots of agile software development
can be traced back as early as 1960’s and even beyond
[1]. The starting point for the movement, however, was
actually in mid 1990’s [2]. Since then, several methods
[for an overview, see 3] have been developed. All of these
methods claim conformance to agile principles put
forward in agile manifesto
(http://www.agilemanifesto.org).

Extreme programming (XP), a method developed by
Beck [4], is one of the better known agile methods. While
a number of XP books [e.g., 5, 6-8] and experience
reports [e.g., 9, 10-12] have been published, less is known
about the empirical and scientific validity of the method

[13-15]. The situation is not unique in software
engineering. While the necessity of empirical software
engineering is acknowledged [16-18], far too often the
application decisions made in practice remain without any
empirical justification [19, 20]. As a result of the
situation, agile methods such as XP have been placed
under severe critique for e.g. embracing the hacker’s
culture and thus neglecting the product and process
quality viewpoints [21]. Furthermore, lack of empirical
data hinders the ability to apply XP and modify it for
different settings and domains.

The aim of this paper is to set references for the use of
researchers and practitioners in the field. This will be
achieved by reporting empirical data grounded on three
basic data points: Time, size and defects [22]. The data
was obtained from controlled case study where the XP
process and the resulting product quality have been under
careful scrutiny.

A team of four developers was acquired to implement
a system (code-named for eXpert) for managing the
research data obtained over years at a large Finnish
research institute. The development schedule and
resources were fixed. Flexibility was reserved to the
delivered functionality. The requirements for the system
were not, however, well known before the project was
initiated due to large number of potential users, i.e. 300+,
and their differing views.

The reported data is organized around five system
releases, each which were tested by 17 customer testers.
While several points of comparison were established, the
more interesting were the system release phase defect-
density (1.43 defects/KLoc), team overall productivity
(16.90 Locs/hour), rework costs (9.8% of the total
development effort) and required actual involvement for
the on-site customer (21%). The contents of the first two
release cycles have been compared in [23]. This paper
extends these early results to include the whole project as
well as discusses the possible implications more in-depth.

The paper is organized as follows. The following
section introduces in brief the purpose of the XP method.
This is followed by a description of how the research was

Copyright IEEE. Abrahamsson, P., & Koskela, J. (2004) Extreme programming: Empirical results from a controlled case study,
ACM-.IEEE International Symposium on Empirical Software Engineering (ISESE 2004), Redondo Beach CA, USA

performed, the results and the discussion. The paper is
concluded with final remarks.

2. Extreme Programming

Extreme Programming is one of several agile software
development methods that have emerged in the past few
years. XP was first introduced in [24]. The method
focuses on delivering immediate business value to the
customer. The XP process can be characterized by short
development cycles, incremental planning, evolutionary
design, and its ability to response to changing business
needs. The method itself is built around what appears to
be easy-to-understand set of practices, which have been
fairly well documented in the literature (see references for
details). These practices are planning game, small
releases, metaphor, simple design, testing (test-driven
development), refactoring, pair programming, collective
ownership, continuous integration, 40-hour work week
(also known as sustainable pace) and on-site customer,
just rules and open workspace. In addition, spikes [7] is
also often associated to the XP method’s practices.

The XP method is designed to meet the needs of a
skilled small, i.e. less than 10 developers, team that is
working in a co-located office together with the customer
developing software that is not safety-critical on an
object-oriented technology [4, 25]. This type of situation
is what can be called an ideal surrounding for the XP
method or what Boehm [26] calls an agile home ground.
This case study falls within this description.

3. Research design

This section describes how the research design for the
study is laid out.

3.1. Research method

The title of the paper indicates the use of a case study
research method [e.g., 27]. However, the boundaries
between different research methodologies and data
collection techniques are often overlapping to certain
extent [28]. Cunningham, [29] for example, relates action
research as one form of case study research. In action
research the focus is more on what practitioners do rather
than what they say they do [30]. This is the position taken
in this study. Moreover, Järvinen [31] follows Oquist [32]
and argues that action produces knowledge to guide
practice, which is the principal aim of this study. In action
research, the modification of reality requires the
possibility to intervene [33]. The first author was in the
role of management in the study and mediated the release
post-mortem analysis [34] sessions, which were
performed after each software release. The second author

acted in the role of on-site customer and participated to
planning game, acceptance testing, post-mortem analysis,
project meetings and coaching activities. On average, he
spent over 80% of his work time in the same room with
the developers. The process change mechanism was
systematized as well. The process was changed through
the post-mortem analysis technique where the project
team proposed changes to the implementation process.
Thus, the origins for modification of reality came from
the project team, not from the researchers.

The term “controlled” in the paper’s title is used
intentionally. Empirical studies include various forms of
research strategies [35]. “Controlled” is most often
associated with the experimentation approach. One
central difference between research strategies is the level
of control. Following Wohlin [36, p. 12] “experiments
sample over the variables that are being manipulated,
while the case studies sample from the variables
representing the typical situation”. If this is accepted, the
experimentation approach can be seen as “a form of
empirical study where the researcher has a control over
some of the conditions in which the study takes place and
control over the independent variables being studied” [35,
p. 456]. Therefore, the use of term “controlled” in this
study implies that the researchers were in a position to
design the implementation environment, i.e. the typical
situation (see next subsection of research setting),
beforehand.

3.2. Research setting

A team of four developers was acquired to implement
an eXpert system for managing the research data obtained
over years at a Finnish research institute. A metaphor that
better describes the intended purpose of the system is a
large sized “virtual file cabinet”, which holds a large
number of organized rich, i.e. annotated, links to physical
or web-based resources. The system has 300+ potential
users and is a web-based client-server solution.

The four developers were 5-6th year university students
with 1 to 4 years of industrial experience in software
development. Team members were well-versed in the java
programming language and object-oriented analysis and
design approaches. Two weeks prior to project launch the
team performed a self-study by studying two basic books
on XP [i.e., 4, 7]. A two day hands-on training on XP
practices, the development environment and software
configuration management tools was organized to ensure
that the team has a basic understanding on XP issues and
the technical environment. Thus, this study focuses on a
development team that is novice to extreme programming
practices.

The team worked in a co-located development
environment. The customer (i.e., a representative from the

Copyright IEEE. Abrahamsson, P., & Koskela, J. (2004) Extreme programming: Empirical results from a controlled case study,
ACM-.IEEE International Symposium on Empirical Software Engineering (ISESE 2004), Redondo Beach CA, USA

research institute) shared the same office space with the
development team. The office space and workstations
were organized according to the suggestions made in the
XP literature to support efficient teamwork. Unused
bookshelves, as an example, were removed in order to
have a maximum amount of empty wall space for user
stories and task breakdowns, architecture description, etc.

Table 1 shows the details of the technical environment
used for the development of eXpert system.

Item Description
Language Java (JRE 1.4.1), JSP (1.2)
Database MySQL (Core 4.0.9 NT, Java

connector 2.0.14)
Development Environment Eclipse (2.1)
SCM CVS (1.11.2); integrated to

Eclipse
Unit testing JUnit (3.8.1); integrated to

Eclipse
Documents MS Office XP
Web Server Apache Tomcat (4.1)

Table 1. Technical implementation environment

Development environment was an Eclipse integration
framework (www.eclipse.org), which is an open source
initiative supported by major software engineering tool
manufacturers. It is based on tool developed by IBM.
CVS (Concurrent Versions System) was used as project's
SCM tool and JUnit testing framework for unit testing.
Both the CVS client and JUnit are integrated as a default
in Eclipse environment. The system was written in Java
and JSP (JavaServer Pages) and it uses MySQL relational
database in storing the data of links. In addition, the
Apache Tomcat 4 Servlet/JSP container was used because
it implements JSP 1.2 specifications from Java Software.

3.3. Data collection

Both quantitative and qualitative data were collected.
As stated earlier, quantitative data was grounded on three
basic data points, i.e. time, size and defect, as suggested
by Humphrey [22]. While a number of other interesting
data points could have been captured, these three metrics
were seen to be the most beneficial for setting some
references for other researchers and practitioners.

Developers collected effort usage for each defined task
and XP practice with a precision of 1 minute using
paper/pen and predefined excel-sheet as the primary
collection tools. It was acknowledged that merely
targeting for high precision per se does not necessarily
improve data collection accuracy [22]. The on-site
customer ensured on his behalf that the metrics collection
procedure was actualized as planned. In addition, a daily

inspection on the metrics collected was initiated. Finally,
the project manager for the project was a PSP trained
engineer who understood the basics of PSP style of
metrics collection. PSP was not, however, utilized as the
development device.

Development work size, i.e. logical lines of code [22],
was collected on daily basis using automated counters for
Java and JSP. Development time defects (including type,
severity), post-release defects (found by 17 allocated
system testers) and the number of enhancement
suggestions made by testers were also systematically
recorded. Work commit size was drawn from the CVS
tool.

As stated, the quality of the data obtained was
systematically monitored by the project manager,
dedicated metrics responsible, on-site customer and the
customer organization’s management. As indicated by XP
principles [4], customer organization placed explicit value
on the data collection, thus ensuring the alignment with
the agile software development principles.

Qualitative data included development diaries
maintained by the developers, post-mortem analysis
session recordings and developer interviews.

4. Results

Table 2 shows the data obtained from the five system
releases and the correction release, which was performed
after the system test. The total column shows the
cumulative/average data from the releases. The first three
(row 1 in the table) releases were two weeks in calendar
time, the last two were one week and the correction
release took two days to complete. Term “release” is used
instead of “iteration” to stress the fact that the system was
released to actual customer test.

Total work effort (row 2) dedicated to project work
remained constant in the first three releases. However, the
direct hours dedicated to tasks (row 3) was reduced from
the initial 70% to 50-60% in 2-week release cycle and
below 50% in one-week cycle indicating an increase in
over-head in very short development cycles. None-task
allocated work was the effort spent to planning-game,
post-mortem analysis, data collection, project meetings,
brainstorming, coaching and pre-release testing.

Row 4 shows the amount of new logical lines of code
the team produced in a release. Team’s productivity (row
5) varied somewhat from 9.02 to 25.12 Loc/hour. This
can be partly explained. First release contained tasks not
related to user functionality such as finalizing the
technical set up of the development environment. In the
fourth release, the development team focused on
documentation as well as did a lot of refactoring work,
which is meant to remove code duplicates and simplify
design solutions. Activities as such do not contribute to

Copyright IEEE. Abrahamsson, P., & Koskela, J. (2004) Extreme programming: Empirical results from a controlled case study,
ACM-.IEEE International Symposium on Empirical Software Engineering (ISESE 2004), Redondo Beach CA, USA

team productivity when measured primarily in terms
added new lines of code. This could have been improved
by counting also modified and deleted lines of code.

Rows 6-8 reveal essential SCM data from the project.
The number of code integrations remained relatively
constant over the project varying between 7.9 and 10.5
code integrations in one working day. Average time
between the integrations was between 21 and 40 minutes
and finally average number of files associated with the
integration varied between 1.7 and 3.1.

Rows 9-12 deal with the user stories, which are
customer defined functional or non-functional
requirements for the system. EXpert system did not have
any explicit non-functional requirements defined. The
team velocity, i.e. number of user stories included in a
single release, increased and stabilized rapidly. The
median user story size decreased from 10.1 hours to
around 5 hours indicating that the requirements were
broken down in a high level of accuracy. The reason for
this was that the largest size of a user story in the first

release was 63.1 hours, which was seen to be too large by
the development team. In the second release, the largest
user story size was reduced to 26.9 hours although
increased back to 41.7 hours in the third release. Yet,
improvement is visible when observed from the task level
(rows 13-15). While only 10 tasks were defined for the
first release, the second release contained already 30
tasks. Even the fourth and the fifth release, which were
only one-week in calendar time, had 21 and 19 tasks
defined, respectively. This demonstrates the team’s
increased ability to decompose requirements into more
manageable level. Importantly the median size of a task
was reduced from 11.7 to less than 3 hours, and the
maximum size of a task was reduced from 32.3 to less
than 10 on average.

Rows 16-17 are concerned with the quality of the
system. 17 testers were allocated for a brief, i.e. max
45min, and intensive, i.e. testing was to be performed
within four hours from system release, user functionality
test.

Id Collected data Release 1 Release 2 Release 3 Release 4 Release 5 Correction
release Total

1 Calendar time (weeks) 2 2 2 1 1 0.4 8.4
2 Total work effort (h) 195 190 192 111 96 36 820

3 Task allocated actual hours 136 (70%) 95 (50%) 118 (61%) 51 (46%) 42 (44%) 27 (75%) 469
(57%)

4 # LOCs implemented in a
release 1821 2386 1962 460 842 227 7698

5 Team productivity (loc/hour) 13.39 25.12 16.63 9.02 20.05 8.4 16.90

6 Code integrations
(integrations/day) 8.1 10.1 7.9 10.5 8.2 8.5 8.9

7 Avg. time between integrations
(minutes) 26 21 40 31 27 30 29

8 Avg. number of files per
integration 1.7 2.4 3.1 2.6 3.0 3.0 2.6

9 # User stories implemented 5 9 9 4 3 4 34

10 # User stories postponed for
next release 0 1 0 1 2 0 4

11 User story effort (actual,
median, h) 10.1 8.3 7.6 5.9 5.2 2.8 6.8

12 User story effort (actual, max,
h) 63.1 26.9 41.7 21.8 15.9 7.6 63.1

13 # Tasks defined 10 30 18 21 19 9 107
14 Task effort (actual, median, h) 11.7 2.9 5.9 1.7 2.6 0.7 2.7
15 Task effort (actual, max, h) 32.3 8.8 14.0 8.8 5.3 3.4 32.3
16 # post-release defects 4 5 4 4 11 - 28

17 Post-release defects/KLoc 2.19 2.10 2.04 8.70 13.06 - 1.43
(3.75)

18 # post-release enhancement
suggestions made by testers 17 13 5 3 0 - 38

19 Pair programming (%) 81.7 76.3 73.0 78.8 54.2 90.4 75.9

20 Required customer
involvement (%) 17.4 21.4 18.6 25.0 23.4 24.3 20.6

21 Rework costs (%) - 8.7* 11.8 11.6 2.6 61.5 9.8
*includes also enhancements

Table 2. Exploratory data from 5+1 releases

Copyright IEEE. Abrahamsson, P., & Koskela, J. (2004) Extreme programming: Empirical results from a controlled case study,
ACM-.IEEE International Symposium on Empirical Software Engineering (ISESE 2004), Redondo Beach CA, USA

Testers did not follow a predefined pattern for testing
or reporting. They worked on a volunteer basis and were
using ad-hoc testing routines and reports. Therefore, the
post-release system defect densities call for special
attention. Release three was tested to a dissatisfactory
level, i.e., less than 10 testers reported their results.
Attention was given to this issue and four (of the 17)
testers were taking a more systematic approach from that
point forward. These four testers performed a two-day
planned system test for the whole system after the fifth
release. Yet, despite of these concerns, the total defect
density for the system was relatively low, i.e. 1.43
defects/KLoc. 1.43 is calculated from the 11 defects that
were discovered in the system test of which four were
cosmetic and two out of the remaining seven were crash
defects. Overall, the defect density was evaluated to be
close to satisfactory giving an indication of the product
quality. In addition, testers produced altogether 38
improvement suggestions, i.e. new or improved user
functionality. Majority of these suggestions emerged from
the first two releases.

Pair programming (row 19) was extensively practiced
in the development of the first release (81.7%) and was
not significantly reduced in the following releases. In the
system correction phase, over 90% of the programming
work was performed in pair programming mode. It is
notable that none of the project team members had any
systematic experience in pair programming prior eXpert
project.

While the customer shared the same office with the
development team and thus was present over 80% of the
total time, the actual customer involvement (row 20) was
only 21% on average. This is a significant result since on-
site customer is one of the most controversial topics in
extreme programming methodology.

Row 21 shows the rework costs associated with the
eXpert project. Altogether 45.8 hours were used to fix
defects, which is 9.8% of the total development effort.

Figure 1 displays the overall effort distribution for the
whole project. Data shows that in this project roughly
10% is required for planning the release contents. Project
management activities, which include data collection &
analysis, monitoring the progress of the project and the
development of project plan required 13.4% of the total
effort. This figure may be slightly overloaded since the
management structure in this project included also two
steering group meetings into which the whole project
team participated.

As suspected, coding in terms of unit test
development1, production code, development spikes and
refactoring took the majority, i.e. 54.7%, of the total

1 Note that no unit tests were developed for JSP code. Unit test
development shown in Figure 1 is with respect to Java code.

effort. Yet, the proportion of actual coding is less than the
expectations put forward in the popular XP literature.
Project meetings took 4.5% of the total effort.

Planning; 9,6

Pre-release testing;
7,4

Other; 7,4

Refactoring; 7,3

Project
management; 13,4

Coding/Java; 17,9

Coding/JSP; 21,9

Spikes; 2,5Project meetings;
4,5

Post mortem; 3,1

Unit test dev.; 5,1

Figure 1. Effort distribution (%)

All the design documentation including architectural
description were displayed on the walls of the
development room. User stories and tasks were
documented and displayed on the same walls as well. The
simple design practice involved in the pair programming
coding was not separately tracked. The effort, i.e. 7.4%,
embedded into “other” pie includes discussions with the
customer organization’s management and some other
miscellaneous tasks, such as system documentation, see
below.

The system documentation (architecture description,
on-line helps, user manual and database description) for
the maintenance purposes were produced in the last two
releases when the system architecture and the user
functionality was stabilized and was seen to be less
subject to constant changes. However, since the effort
was tracked based on predefined XP practices and tasks,
the effort spent on system documentation is loaded on a
pie labeled “other”. XP literature has argued that the first
iteration for a novice XP team is always a significant
learning effort. Literature has further shown that an ability
to estimate accurately is a skill that is learned over time
[22]. As expected, the team had major difficulties in
decomposing the contents of the first release into tasks
(only 10 tasks defined for 5 user stories). Similarly, the
team had major difficulties in producing the estimates for
these tasks.

Copyright IEEE. Abrahamsson, P., & Koskela, J. (2004) Extreme programming: Empirical results from a controlled case study,
ACM-.IEEE International Symposium on Empirical Software Engineering (ISESE 2004), Redondo Beach CA, USA

Release 1 Release 2 Release 3 Release 4 Release 5 Correction
Release

Estimation error %

Figure 2. Estimation accuracy

R1 R2 R3 R4 R5 R6

n = 107 tasks

Figure 3. XP Pulse: Hours lost by faulty estimates

User story effort estimates were derived from the task
estimates. Figure 2 shows a series of box plots1 depicting
the estimation accuracy development over the system
releases. The data used for the drawing the box plots is
the task level data. Altogether 107 tasks were defined in
the eXpert project. Data below the thickened line
indicates overestimation and data above the line refers to
underestimation of the tasks.

When Figure 2 is carefully studied, several
observations can be made. Estimation error variance
remains high throughout the project. While median value
shows clear improvement, i.e. it approaches value 0,

1 A box plot diagram visualises the five-number summary of a data set.
Median (a line in the shaded area) value indicates that 50% of data points
are below and 50% are above the line. Q1 (first or lower quartile) shows
the median of the lower 50% of data points. Q3 (third or upper quartile)
shows the median of upper 50% of data points. The minimum value
indicates the lowest and the maximum the highest values in the
respective data sets.

estimation errors are common place even in the last
releases. The concentration of the data points does not
show clearly identifiable improvement. Statistical data
treatment was not seen feasible beyond this point in this
study.

While estimates are not accurate in terms of error
percentage, Figure 3 indicates clearly identifiable
improvement in terms of hours lost by faulty estimates.
The thick line indicates a loss of zero hours. Data points
below the thickened line indicate that a particular task
was finished earlier than expected. Data points above the
thickened line indicate that a particular task took longer
than expected. The tendency and trend observed from the
diagram indicate certain type of heart beat inherent to this
type of an XP project. This is where the term “XP Pulse”
originates. Thus, even though estimations are faulty to
certain extent, the time lost by these “guesses” is
predominantly (i.e., 92%) within +/- 5 hours altogether
after the first release demonstrating a rapid ability to gain

Copyright IEEE. Abrahamsson, P., & Koskela, J. (2004) Extreme programming: Empirical results from a controlled case study,
ACM-.IEEE International Symposium on Empirical Software Engineering (ISESE 2004), Redondo Beach CA, USA

control over the project. The reason for this can be found
from Table 2 (row 14) where actual median effort spent
on a single task is shown. The development team
intentionally strove for smaller task segments in order to
improve their work control mechanisms. Actual effort
spent on a single task was cut to half from the first
release. Similarly, the user stories were divided into task
segments, which were sized between 4-8 hours on
average. Therefore, even if a certain task takes few hours
extra than originally expected, it is not likely to disrupt
the development process since data shows that in many
cases tasks are finalized with less effort than expected.

It should be noted that overestimation can become a
problem if resources are allocated on this basis. However,
in this particular case, the XP team mitigated the
estimation problem by defining considerably smaller
tasks. This is evidenced in the data also by the number of
tasks identified (Table 2, row 13). The project manager
was able to take necessary actions on daily rather than on
weekly basis. This data also hints to a direction that the
user stories were better defined due to required small-
sized task definitions.

5. Discussion

The results presented in the previous section
emphasized the differences between different system
releases in the eXpert project from several empirical
viewpoints all of which were drawn from three data
points, i.e. time, size and defect. The mere amount of
valid empirical data obtained demonstrates the ability to
collect data in agile software development in general and
in XP in particular. The purpose of this paper is to set
some references for researchers and practitioners in the
field from empirical viewpoint. Less emphasis has been
placed here on the qualitative data.

One of the important findings is related to the little
need for actual customer involvement in the project. This
finding is not in line with the XP literature. Many authors
[e.g., 37, 38-40] maintain that on-site customer
involvement is difficult and even unrealistic to think of
due to required customer work effort. In the eXpert case,
the customer was present on-site on average over 80% of
the total working time. However, only 21% of his work
effort was required to assist the development team in the
development. Majority of customer’s involvement was
required on planning game (42.8%) and acceptance
testing (29.9%). In the eXpert case the customer did not
develop automated acceptance tests but performed them
manually. However, the mere presence of the customer
was highly appreciated by the development team.
Customer presence appeared as a positive indicator in the
post-mortem analysis sessions and interviews. The team
viewed that the customer organization values the system

high and this was seen to work as a motivating factor for
the team. Thus, regardless of the required effort usage,
on-site customer can be seen as an important stakeholder
in the project. It should be further emphasized that in this
case, the customer did not develop acceptance tests. He
was performing these tasks manually at the end of each
release cycle.

As stated earlier, the system release defect density was
1.43 defects/Kloc. The system was released on Friday at
noon. By following Monday morning, an early insight
was obtained to development phase release’s defect
density. This was monitored throughout the project (Table
2, row 17). Defect density showed slight increase when
the development cycle was reduced to mere one week.
Yet, the level remained very low throughout the project.
This result can be seen positive from three perspectives.
First, an early insight was gained to the overall product
quality. If more bugs would have been discovered,
necessary actions could have been taken rapidly to
mitigate the problem with this aspect of quality.

Second, the testing team formed a part of the user
group who will make use of the system when it is finally
released. Thus, apart from testing the user functionality,
they had an opportunity to influence the content of the
future releases. Research has shown that user involvement
in the systems development process has a positive impact
on the subsequent system adoption and use [41]. This is
also inline with the XP procedures. In the five system
releases altogether 38 new or enhanced user functionality
suggestions were received. 32 (84%) of them lead to
action. The large percentage demonstrates the value of
this type feedback system. It should also be noted that 30
(79%) of 38 improvement suggestions were known
already after the second release. Involving users as testers
can be seen as a form of requirements elicitation
procedure. Moreover, the eXpert testers were able to
observe how the development proceeds from the very first
release to the final fully functional system. However, it
should be further noted that a one week release cycle to
end-user testing was not totally appreciated by the users.
In some cases it was seen disturbing to have a new
version at hand in one week’s time.

The third advantage related to low defect density and
the testing process is the rapid feedback acquired for the
development team. The customer representative collected
and categorized the suggestions (and bugs) reported over
the weekend and presented the results on the following
Monday to the development team – another explicit sign
of strong customer commitment toward the
implementation project.

Pair programming is one of the most researched XP
practices [see e.g., 42, 43-48]. Only few studies have,
however, provided data on pair programming over longer
period of time. This study contributes to empirical

Copyright IEEE. Abrahamsson, P., & Koskela, J. (2004) Extreme programming: Empirical results from a controlled case study,
ACM-.IEEE International Symposium on Empirical Software Engineering (ISESE 2004), Redondo Beach CA, USA

knowledge particularly in this regard. As noted, in the
first release, 81.7% of the programming effort was done
in pairs. This was reduced only slightly in the following
releases averaging to 75.9%. Williams [43] has argued
that only after having effectively experimented with the
pair programming practice, an estimation can be made
where it delivers the most value and where it proves
ineffective. Clearly, two weeks is not sufficient for a
through evaluation of a single practice but due to the tight
delivery schedule, the team was able to make decisions
regarding each practice in the post-mortem analysis
session performed after each release. However, the fact
that the pair programming time remained well above 70%
in the following releases demonstrates that the team felt
comfortable with it. Williams and Kessler [44] remind
that no one should be forced to use pair programming. In
eXpert case, the base process provided for the team in the
beginning of the project required the application of pair
programming during the first release. After that, it was up
to the team to make the decision. Developers did not track
defects that were caught in pair programming mode.

Coding effort pattern that was used for pair and solo
programming did not significantly differ as shown in
Table 3. As noted earlier no unit tests were developed for
JSP code. In the solo programming mode slightly more
effort was spent on refactoring than on pair mode. Yet,
the difference is not remarkable.

 Spike

code
Unit
test dev.

Java
code

JSP
code

Re-
factoring

Pair 4.8% 9.8% 34.5% 38.4% 12.4%
Solo 4.1% 7.5% 27.6% 44.9% 15.9%

Table 3. Effort use % in pair and solo
programming

Interestingly, the development time productivity
achieved in the second release (i.e., 25.12 Loc/hour) is
close to the same as e.g. PSP research [49] has
consistently shown. The data obtained in this study does
not show a relation between the use pair programming
and the level of achieved productivity. The refactoring
data, on the other hand, may reveal interesting insights.
The highest levels of productivity are achieved when only
5.9% of the effort was used for refactoring. Yet, as Table
4 shows this tendency is not consistent with the rest of the
releases and only indirectly provides support for the
argument that extensive levels of refactoring decreases
team productivity. Kivi et al. [9] suspect that most of the
work towards the end of the project may be refactoring.
Our findings show that the levels of refactoring increase
somewhat but not to a significant degree. In fact, the last
system release (i.e., Release 5) shows a reduction in the
proportion of time used for refactoring. In the project
post-mortem analysis session after the project had been

completed the team evaluated that not enough of
refactoring was done for the system and that it should be
explicitly involved in the user stories as a separate task.

 R1 R2 R3 R4 R5 CR
Productivity
(Loc/hour)

13.39 25.12 16.63 9.02 20.05 8.4

Refactoring % 13.8 5.9 18.1 18.0 11.2 0

Table 4. Productivity vs. Refactoring

In software engineering in general, accurate effort
estimates are difficult to attain [22] Initial estimates can
often be better regarded as “guesstimates” [50] Regarding
the XP process of producing the estimates, McBreen [21,
p. 60] was especially doubtful about the value of XP
planning game: “The accuracy of the estimates produced
during the planning game needs to be investigated,
especially for organizations that are just adopting XP. [...]
I wonder how long it takes a new XP team to get good at
the Planning Game.” This paper gives concrete results in
this regard. The estimation accuracy was improved in
terms of estimation error. The estimation accuracy
stabilized within +/- 25% error margin (suggested by
Humphrey [22]) and mis-allocated development time due
to inaccurate estimations was also reduced on average
from 5.8h to 0.15h. Langr [51] argues that “Initial
estimates are going to be inaccurate in any process. In
XP, the team has lots of opportunities to estimate and to
learn how to do it well – the team hones their estimating
skills every two weeks.” This study thus supports Langr’s
suggestion. Our findings indicate further that a novice XP
team is very careful about making too optimistic
estimates. However, it took them only two weeks to
realize this. Learning to execute the planning game
routines was facilitated by a clear agreement on the
procedures, roles and responsibilities.

Only four (9%) out of 34 user stories were postponed
for the next release. The postponement did not come as a
surprise for the customer since he was present, and he
gave the approval after having consulted with the
management about the change in the release contents. It
was agreed before the project started that the release date
should not be postponed but the content can be negotiated
if the team so desires. This is in line with what Humphrey
[52] discusses about making a commitment and keeping
it. The team commits to the release schedule and the
contents are negotiated. If any changes are to be made, an
early warning must be given.

Finally, in the eXpert project the rework costs were
9.8% of the total development effort. Beck’s [4] basic
argument in his seminal work was that in XP the cost of
change does not show a dramatic increase when the
development progresses beyond certain point. Instead, it
should remain stable over the project. To our knowledge

Copyright IEEE. Abrahamsson, P., & Koskela, J. (2004) Extreme programming: Empirical results from a controlled case study,
ACM-.IEEE International Symposium on Empirical Software Engineering (ISESE 2004), Redondo Beach CA, USA

no concrete figures can be found in the XP literature or
elsewhere to support this argument. Our findings support
Beck’s claim to certain extent. Yet, a system with less
than 10000 lines of code can not be seen to constitute a
significant support to this issue. It rather indicates a
direction that should be investigated further.

6. Conclusions

Agile movement has gained significant attention in the
software engineering community in the last few years.
While concrete data about the various aspects of the XP
process are emerging, less data is available regarding the
resulting product. This may be due to the fact that
companies are not willing to reveal these details. This
paper aims at setting some references for researchers and
practitioners in the field by reporting concrete data from a
controlled case study where a team of four developers
was acquired to develop a fully operational system for a
research institute’s research data management and
distribution purposes in a delivery schedule of eight
weeks. Due to the tight schedule, the functionality was
not fixed. The concrete results reported are based on five
system releases and a correction release. The resulting
product was tested by 17 testers who used a maximum of
45 minutes to test the defined user functionality. The data
shows that the system release defect rate was 1.43
defects/Kloc, team’s overall productivity was 16.90
Locs/hour, the rework costs were mere 9.8% of the total
development effort, and the required actual involvement
for the on-site customer was 21%. These and other
findings were addressed.

It should be noted that the team collected more data
about their work than is the case usually. This was
achieved by placing value on the data collection. This is
in accordance to basic values of agile thinking. The
development team delivers business value for the
customer organization. If the client organization does not
require detailed data about the development process, the
team may easily fall behind in data collection. For this,
certain data collection rules must be established within the
development team. In eXpert case, the team decided use
the simplest solution and to put up a sheet on the wall
where each developer will sign their name after the data
has been recorded at the end of the working day to ensure
that the commitment to collect and record data has been
met.

We will continue to follow up and monitor the system-
in-use defects. Several other research streams have also
been initiated. The resulting product quality has been
assessed by an external team of assessors, the used
development process has been assessed by an external
CMMI assessor and an independent user-centered design
assessment has been performed both on the development

process and the product. These results along with the
qualitative data will be published separately.

We find that the data reported in this paper is of value
for practitioners and researchers in the field and will
provide some references for future studies as well
industry application within similar domain of application.
We suggest that more concrete data is needed for the agile
movement to progress beyond the practicing enthusiastic.
Indeed, a separate framework is needed, which guides the
agile and XP data reporting. To meet these needs,
Williams et al. [53] published recently a benchmark
measurement framework for researchers and practitioners to
express concretely the XP practices that have been selected
to adopt, and the outcome thereof. This framework and
studies like the one reported in this paper can be seen to
provide a starting point for strengthening the empirical
body of evidence in agile software development.

References

[1] C. Larman and V. R. Basili, "Iterative and incremental
development: A brief history," IEEE Software, vol. 20, pp. 47-
56, 2003.

[2] L. Williams and A. Cockburn, "Agile software
development: It's about feedback and change," IEEE Software,
vol. 20, pp. 39-43, 2003.

[3] R. Turner and B. Boehm, Balancing agility and discipline:
A guide for the perplexed. Boston, MA: Addison-Wesley,
2003.

[4] K. Beck, Extreme programming explained: Embrace
change. Reading, MA.: Addison Wesley Longman, Inc., 2000.

[5] G. Succi and M. Marchesi, "Extreme Programming
Examined: Selected Papers from the XP 2000 Conference,"
presented at XP 2000 Conference, Cagliari, Italy, 2000.

[6] R. M. a. J. Newkirk, Extreme Programming in Practice:
Addison-Wesley, 2001.

[7] R. Jeffries, A. Anderson, and C. Hendrickson, Extreme
Programming Installed. Upper Saddle River, NJ: Addison-
Wesley, 2001.

[8] R. Hightower and N. Lesiecki, Java Tools for Extreme
Programming. New York: Wiley Computer Publishing, 2002.

[9] J. Kivi, D. Haydon, J. Hayes, R. Schneider, and G. Succi,
"Extreme Programming: a University Team Design
Experience," presented at CCECE 2000 - Canadian
Conference on Electrical and Computer Engineering, Nova
Scotia, NS, USA, 2000.

[10] P. Schuh, "Recovery, Redemption, and Extreme
Programming," IEEE Software, vol. 18, pp. 34-41, 2001.

[11] D. Wells and T. Buckley, "The VCAPS project: An
example of transitioning to XP," in Extreme programming
examined, G. Succi and M. Marchesi, Eds. New York:
Addison-Wesley, 2001, pp. 399-422.

[12] P. Sommerlad, "Adopting XP," in Extreme programming
examined, G. Succi and M. Marchesi, Eds. New York:
Addison-Wesley, 2001, pp. 423-432.

[13] M. Lindvall, V. Basili, B. Boehm, P. Costa, K. Dangle, F.
Shull, R. Tesoriero, L. Williams, and M. Zelkowitz,
"Empirical findings in agile methods," presented at XP/Agile

Copyright IEEE. Abrahamsson, P., & Koskela, J. (2004) Extreme programming: Empirical results from a controlled case study,
ACM-.IEEE International Symposium on Empirical Software Engineering (ISESE 2004), Redondo Beach CA, USA

Universe 2002, Chicago, USA, 2002.
[14] G. Melnik, L. Williams, and A. Geras, "Empirical

Evaluation of Agile Processes," presented at XP/Agile
Universe 2002, Chicago, USA, 2002.

[15] P. Abrahamsson, J. Warsta, M. T. Siponen, and J.
Ronkainen, "New directions on agile methods: A comparative
analysis," presented at International Conference on Software
Engineering (ICSE25), Portland, Oregon, 2003.

[16] V. R. Basili, "The role of experimentation in software
engineering: Past, present and future," presented at Keynote
address in 18th International Conference on Software
Engineering (ICSE18), Berlin, Germany, 1996.

[17] V. R. Basili, "Using experiments to build a body of
knowledge," presented at Keynote address in Seventh
European Workshop on Software Process Technology
(EWSPT-2000), Kaprun, Austria, 2000.

[18] W. F. Tichy, "Should computer scientists experiment
more?," IEEE Computer, pp. 32-40, 1998.

[19] N. Fenton, "Viewpoint Article: Conducting and presenting
empirical software engineering," Empirical Software
Engineering, vol. 6, pp. 195-200, 2001.

[20] M. V. Zelkowitz and D. R. Wallace, "Experimental
Models for Validating Technology," IEEE Computer, pp. 23-
31, 1998.

[21] P. McBreen, Questioning extreme programming. New
York: Addison-Wesley, 2001.

[22] W. S. Humphrey, A discipline for software engineering.
Reading, Mass.: Addison Wesley, 1995.

[23] P. Abrahamsson, "Extreme programming: First results
from a controlled case study," presented at Euromicro 2003,
Antalya, Turkey, 2003.

[24] K. Beck, "Embracing change with extreme programming,"
IEEE Computer, pp. 70-77, 1999.

[25] M. Lippert and S. Roock, "Adapting XP to complex
application domains," presented at The 8th European software
engineering conference, 2001.

[26] B. Boehm, "Get Ready For The Agile Methods, With
Care," Computer, vol. 35, pp. 64-69, 2002.

[27] R. K. Yin, Case Study Research Design and Methods, 2nd
ed ed: Sage Publications, 1994.

[28] T. D. Jick, "Mixing qualitative and quantitative methods:
Triangulation in action," Administrative Science Quarterly,
vol. 24, pp. 602-611, 1979.

[29] J. B. Cunningham, "Case study principles for different
types of cases," Quality and quantity, vol. 31, pp. 401-423,
1997.

[30] D. Avison, F. Lau, M. Myers, and P. A. Nielsen, "Action
Research," Communications of the ACM, vol. 42, pp. 94-97,
1999.

[31] P. Järvinen, On research methods. Tampere: Juvenes-
Print, 2001.

[32] P. Oquist, "The epistemology of action research," Acta
Sociologica, vol. 21, pp. 143-163, 1978.

[33] G. I. Susman and R. D. Evered, "An Assessment of the
Scientific Merits of Action Research," Administrative Science
Quarterly, vol. 23, pp. 582-603, 1978.

[34] T. Dingsøyr and G. K. Hanssen, "Extending Agile
Methods: Postmortem Reviews as Extended Feedback,"
presented at 4th International Workshop on Learning Software
Organizations, Chicago, Illinois, USA, 2002.

[35] V. R. Basili and F. Lanubile, "Building knowledge
through families of experiments," IEEE Transactions on
Software Engineering, vol. 25, pp. 456-473, 1999.

[36] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B.
Regnell, and A. Wesslén, Experimentation in software
engineering. Boston: Kluwer Academic Publishers, 2000.

[37] C. Farell, R. Narang, S. Kapitan, and H. Webber,
"Towards an Effective Onsite Customer Practice," presented
at XP 2002, Sardinia, Italy, 2002.

[38] A. Martin, J. Noble, and R. Biddle, "Being Jane
Malkovich: A Look Into the World of an XP Customer,"
presented at XP 2003, Genoa, Italy, 2003.

[39] L. A. Griffin, "A Customer Experience: Implementing
XP," presented at XP Universe, Raleigh, NC, USA, 2001.

[40] T. Bozheva, "Practical Aspects of XP Practices,"
presented at XP 2003, Genoa, Italy, 2003.

[41] J. Hartwick and H. Barki, "Explaining the Role of User
Participation in Information System Use," Management
Science, vol. 40, pp. 440-465, 1994.

[42] J. Nawrocki and A. Wojciechowski, "Experimental
evaluation of pair programming," presented at ESCOM 2001,
London, UK, 2001.

[43] L. Williams, R. R. Kessler, W. Cunningham, and R.
Jeffries, "Strengthening the case for pair programming," IEEE
Software, vol. 17, pp. 19-25, 2000.

[44] L. Williams and R. Kessler, Pair programming
illuminated. New York: Addison-Wesley, 2003.

[45] G. Succi, W. Pedrycz, M. Marchesi, and L. Williams,
"Preliminary analysis of the effects of pair programming on
job satisfaction," presented at XP 2002, Alghero, Sardinia,
Italy, 2002.

[46] A. Janes, B. Russo, P. Zuliani, and G. Succi, "An
empirical analysis on the discontinuous use of pair
programming," presented at XP 2003, Genoa, Italy, 2003.

[47] S. Heiberg, U. Puus, P. Salumaa, and A. Seeba, "Pair-
programming effect on developers productivity," presented at
XP 2003, Genoa, Italy, 2003.

[48] K. M. Lui and K. C. C. Chan, "When does a pair
outperform two individuals," presented at XP 2003, Genoa,
Italy, 2003.

[49] W. Hayes and J. W. Over, "The Personal Software Process
(PSP): An Empirical Study of the Impact of PSP on Individual

Engineers," Software Engineering Institute, CMU/SEI-97-TR-
001, Technical Report CMU/SEI-97-TR-001,
http://www.sei.cmu.edu/publications/documents/97.reports/97
tr001/97tr001abstract.html, 1997.

[50] P. M. Johnson, C. A. Moore, J. A. Dane, and R. S. Brwer,
"Empirically guided software effort guesstimation," IEEE
Software, vol. 17, pp. 51-56, 2000.

[51] J. Langr, "Book review: Questioning extreme
programming," vol. Page accessed March 10, 2003:
XProgramming.com: An Extreme Programming Resource,
2002.

[52] W. S. Humphrey, Managing the Software Process.
Reading, Mass.: Addison-Wesley, 1989.

[53] L. Williams, W. Krebs, L. Layman, A. I. Antón, and P.
Abrahamsson, "Toward a framework for evaluating extreme
programming," presented at 8th conference on evaluation &
assessment in software engineering (EASE 2004), Edinburgh,
UK., 2004.

