

Copyright 2004 IEEE. Published in the Proceedings of the 30th Euromicro Conference, Rennes, France.

Improving Requirements Management in Extreme Programming with Tool
Support – an Improvement Attempt that Failed

Jukka Kääriäinen, Juha Koskela, Pekka Abrahamsson, Juha Takalo
VTT Technical Research Centre of Finland
P.O. Box 1100, FIN-90571 Oulu, Finland

{jukka.kaariainen; juha.koskela; pekka.abrahamsson; juha.takalo}@vtt.fi

Abstract

While Extreme programming (XP) relies on certain

principles, it requires an extensive set of tools to
enable an effective execution of its practices. In many
companies, putting stories on the board may not be
sufficient for managing rapidly changing
requirements. The objective of this paper is to report
the results from a study where a requirement
management tool – the Storymanager – was developed
to meet the needs of a XP project team. The tool was
used in a case project where a mobile application for
real markets was produced. The tool was dropped by
the team only after two releases. The reasons of the
process improvement failure are addressed in this
paper. The principal results show that the tool was
found to be too difficult to use and that it failed to
provide as powerful a visual view as the paper-pen
board method. The implications of these findings are
addressed for both the practitioners and researchers in
the field.

1. Introduction

Extreme programming (XP) is a well known agile
software development method. While XP relies on
certain principles, such as communication and
simplicity, it also requires tools to enable an effective
execution of its practices. In many companies, listing
the stories on to the board is not sufficient for
managing changing requirements. We made an attempt
at finding a solution for managing user stories and
tasks in electronic format as a part of the Eclipse tool
integration framework, but there were no solutions
available for this. Thus, we decided to develop a
specific plug-in application for the Eclipse

environment, which was called the Storymanager. One
of the characteristic of methods and tools is that they
need to be adapted to fit a certain company or project
context [1]. Thus, these tools have to take into account
the nature of the project, including the development
methods used in the project.

The objective of this paper is to report the results
from a study where a requirement management tool –
the Storymanager - was developed to meet the needs of
a fast moving XP project team. The aim of the tool was
to minimize rework and automate the time consuming
paper-pen practices, such as recording story and task
items on the board and then separately on an excel
sheet, or equivalent.

The paper is composed as follows. The background
concepts of Extreme Programming and Requirements
Management (RM) are first introduced. Then the
related research is laid out regarding RM in XP
context. This is followed by a detailed discussion on
our solution for RM in XP environment. Then,
research design is described. Finally, the results are
presented and discussed. The paper is concluded with
final remarks and the identification of future research
needs.

2. Background

This section introduces the concepts of extreme
programming and requirements management.

2.1. Extreme Programming

Extreme programming (XP) as a concept has

emerged in the late 90's [2]. Along with XP, several
agile methods have emerged (for an overview, see,
e.g., [3]). XP addresses the issues of changing

requirements and their cost by simplifying
management tasks and documentation. XP uses an
iterative and incremental software process performed
in relatively short cycles.

Product development in the XP process starts with a
“planning game.” Planning game can be divided into
“release planning” and “iteration planning” [4]. During
the planning game, the customer writes user stories,
which are estimated by the developers and then
prioritized by the customer. After this, developers
divide the stories into tasks and give an estimate for
each task. The next step in the XP process is the actual
development, during which the iterations are produced
and released. Then finally, acceptance tests are used to
validate the completion of stories.

2.2. Requirements Management

Requirements management (RM) can be seen as a
parallel support process for other requirements
engineering processes [5, 6]. It ensures that
requirements are documented and that they are
traceable during product development and that changes
to them are properly handled.

Requirements identification is an essential pre-
requisite for RM. It focuses on the assignment of an
unique identifier for each requirement [5]. These
identifications can be used to unambiguously refer to
requirements during product development and
management. Further, requirement attributes can be
used for recording additional information about
requirements [7].

Requirements traceability (RT) refers to the ability
to describe and follow the life of a requirement in both
forward and backward direction [8, 9]. Gotel [8]
emphasizes the life cycle aspect of traceability.
Requirements form the basis of design and
implementation activities, and they should be traceable
through the life-cycle of a product. Requirement
traceability is needed, e.g., for verification and change
impact analysis activities.

Requirements change management refers to the
ability to manage changes to requirements [6]. It also
ensures that similar information is collected for each
proposed change and that overall judgments are made
about the costs and benefits of a proposed change.
Even if requirement specification is comprehensive,
some changes can take place during development. This
gives rise to the need for clearly defined practices that
provide guidance for handling possible changes to
requirements.

3. Related research

In this section, the related research is presented. The
results of this review are used for building research
lenses (an analysis framework), which will be used to
analyze the results of this case project later in the
paper.

Traditional XP relies on efficient communication,
which is one of the basic values of the method [2, 10].
XP emphasizes communication, e.g. through practices,
such as “Open Workspace”, "Pair Programming" and
“Planning Game” [2, 11]. Macias et al. [12] state that
interactive communication between the developers,
clients and managers in XP should be emphasized.
Face-to-face communication is an efficient mechanism
in realizing this. For an agile team to be successful,
good communication mechanisms have been found to
be critical [13].

The agile principles value working software over
comprehensive documentation [3]. Beck [2] also
emphasizes lightweight documentation in XP based
development. Ambler [13] emphasizes the slogan
“Travel light” in the context of documentation. Ambler
states that it is useful to produce just enough
documentation and to update it only when needed.
This enables the team to be more effective in
producing results that deliver more business value for
the customer than traditional paper-driven
methodologies.

Ease-of-use is an important aspect when developing
tool support for XP development (and actually for any
SW related work). For example, Lippert [14] identifies
ease-of-use as a very important aspect for XP tool
support during continuous integration. The tool should
not slow down the product development or cause
additional maneuvers during fast-paced development.
O'Brian Holt [15] present some factors for assessing
usability, including aspects such as: Is the system easy
to learn to use? Is it possible to modify the system
without reducing its usability? Is the system
comfortable and satisfying to use? Nielsen [16] defines
the different aspects of usability as follows: easy to
learn, efficient to use, easy to remember, few errors,
and subjectively pleasing.

Some authors have considered requirements
management from an XP point of view. Breitman and
Leite [17] support XP by using a scenario structure to
organize information elicited through user stories.
While they do not agree with Beck who maintains that
implemented stories should be discarded, they
highlight the traceability of stories. Nawrocki et al.
[18] state that the main weaknesses of the XP approach
to requirements management is the lack of

requirements documentation. This causes problems
especially when managing changes to requirements
and maintaining traceability. Alike, Wagner [19]
concludes that the lack of written, traceable
requirements can make it difficult to maintain the
developed software over time. On the other hand,
Wagner [19] states that requirements baselining exists,
in some form, in the XP process, because each iteration
contains an agreed set of stories. From a change
management viewpoint, the requirements management
literature in fact proposes quite rigorous processes for
managing requirement changes [20]. However, formal
and cumbersome practices for change management do
not fit the nature of XP. Therefore, lightweight and
simple practices for managing changes in XP have
turned out effective in practice [21].

Several authors have addressed the tool support
used for managing user stories and tasks. Internet-
based tool support for distributed XP, called MILOS,
has been introduced by Maurer and Martel [22]. This
solution supports virtual software teams with
communication, collaboration and coordination. The
solution allows the user to write and manage stories
and tasks in electronic format. Rees [23] has presented
a tool called DotStories for managing user stories,
claiming that the tool approaches an ideal solution for
user story management. Rees also refers to
spreadsheets and databases as further potential tools
for managing user stories. Lippert et al. [24] claim that
a computer cannot be used for the planning game. On
the other hand, they further argue that a computer can
be used just for writing stories and tasks and printing
them out on paper. The XP process itself does not
exclude the use of automated tools for storing user
stories. Actually, tools and databases can provide a
means for more effective information management
[25] [5].

Integrated environment and data sharing enable the
project team to focus on development work, while
daily data management has been automated. This
means that all project-related data is managed at a
unified location and integrated tool support eases
tedious tasks, such as information retrieval,
distribution, consistency checking, archiving, etc. It
has been stated in literature that management system
integration is likely to improve the consistency and
sharing of product-related information (e.g. [26] and
[27]).

4. Tool support for the management of
user stories: the Storymanager tool

Our solution to managing user stories and tasks is
called Storymanager. The proposed solution was
integrated in the Eclipse environment. Eclipse is a
development environment and a tool integration
framework found suitable for XP development. A
detailed description of the proposed Storymanager
solution has been published in [28] (Figure 1).

Our intention was to remain agile, no new solution
or practice should jeopardize the fundamental idea of
adaptable and lightweight processes. The basic
intention of this study was to transfer manual XP
requirements management practices into an electronic
form and yet try to remain agile. A further aim was to
integrate the solution into the Eclipse tool integration
framework. An integrated tool framework enabled the
project team to work with one channel throughout the
whole development life cycle. During the planning
game, the team was working through the Storymanager
plug-in. Stories and tasks were stored into an MySQL
relational database. During implementation and testing,
the team was working, e.g., through a JDT (java
development environment) plug-in and a Junit (testing
framework) view. From an information management
point of view, our approach included support for
requirements management and configuration
management. Requirements management was used in
this environment for sharing and managing user stories
and tasks, while configuration management (CVS) was
used for managing and sharing code and other
documentation.

Figure 1. Storymanager - the main view

The Storymanager allows a specification of story
and task attributes according to the needs of the
project. The program enables filling in story/task cards
according to project-specific attributes. The AutoID
facility of the program is used to automatically create
unique identifiers (ID) for stories (and tasks). Certain
attributes, however, are mandatory, e.g. status,
description, release identifier, iteration identifier. Other
attributes are user-defined and optional.

The program allows the user to modify stories, but
in XP only the last story version is relevant. Thus, the
application contains only the last updated version.
According to basic XP principles, formal and
bureaucratic change management activities are not
considered appropriate. However, the application
stores a version history of the item (story/task), which
can be used for examining the history of the item. The
attributes “Release” and “Iteration” contain
information about the selection of items for specific
releases and iterations. In fact, this corresponds with
the requirements baselining facility indicating an
agreed set of items for a specific release and iteration.

During iteration planning, a set of stories is selected
for next iteration. This is illustrated using an iteration
attribute. Then the tasks are defined for next iteration.
A task can be assigned to a story (traceability between
stories and tasks). In this case, the program stores the
linking information in a MySQL Link-table. However,
a task can also be created under a project root and
allocated afterwards.

Certain supporting features are needed regardless of
the phase of the project. These features include check
out/in capabilities, views and reporting. The reporting
features are used for printing stories and their
respective tasks and putting them on the board when
operating in an open workspace.

5. Research design

This section describes how the research and

experiment settings were designed.

5.1. Research settings

In this chapter, the research settings used for

developing and validating the solution designed for
managing user stories are depicted. Application
development and validation are based on two XP
experiment projects (Figure 2) using the action
research [29, 30] approach as the principal
methodological driver. Avison [31] and Fowler &
Swatman [32] have used the action research method to
build information system development methods.

Action research is done in cycles, each cycle consisting
of planning, action, observation and reflection phases.
After each cycle, there will be a revised plan for the
next cycle as a result. We applied the action research
approach while trying to improve the management of
user stories and tasks in XP development.

A project called eXpert was used for developing a
system for managing the research data and documents
at VTT. The project used XP practices for developing
the system. Detailed results of the eXpert project can
be found in [33]. The project used a manual solution
for managing user stories and tasks, as suggested in the
XP literature. During the project, the need for
electronic user story and task management emerged.
After the project, the results were analyzed and an
application was constructed to support a more
automated, i.e. electronic, user story management. The
requirements for electronic story management and the
application itself were introduced in [28]. The
validation and improvement planning of the
application were carried out as part of the zOmbie-
project, which was concerned with developing mobile
application software in the Eclipse environment. The
validation of the electronic user story management tool
was carried out and observations and interviews were
made during the project. After the project, the results
were analyzed and improvement ideas were produced
for future development.

The eXpert
-project

The zOmbie
-project

Storymanager
application
development

XP-RM
requirements
definition

Validation

Analysis &
reporting

06/2003

01/2004

01/2003

Figure 2. Storymanager development

An analysis framework was constructed to analyze
and understand the results of the validation. The
framework was based on the survey of related research
and underlying XP concepts and requirements
management, as presented in sections 2 and 3 of this

paper. Our analysis framework reflects technical issues
as well as those concerning the methodological aspects
of XP. The technical issues focus on the definition of
functionality that is needed for requirements
management in an integrated XP development

environment. The methodological aspects refer to the
underlying nature of the XP method. Table 1 presents
the analysis framework.

Table 1. Analysis framework

Perspective Description Key references

Communication Does the solution allow open communication between

developers and between developers and customers?

[2, 10, 11]

Documentation Does the solution allow lightweight documentation? [2], [3], [13]

Ease-of-use Is the solution easy to use, so as to support fast-paced iterative

development?

[14], [15], [16]

Functionality Does the solution support functional needs for requirements

management (identification, traceability and change

management) and integrated development environment?

Requirements management : [5], [6],
[7], [8], [9], [21], [17],[19], [24]

Integrated development environment:

[26], [27]

5.2. Experiment settings

The functionality of the application was validated
and tested in an experimental XP project called
zOmbie. In the zOmbie project, mobile application
software was developed in the Eclipse environment. In
this experiment, the Eclipse environment was
complemented with Storymanager. The aim of the
zOmbie project was to produce a real financial sector
software product for real markets. The project was an
engineering success. The product is now being
marketed. The Eclipse environment was used
successfully already in the previous XP case study of
VTT [33]. In zOmbie case study, the Eclipse
environment was used together with the following
tools (Table 2).

Table 2. Tool environment in the zOmbie
experiment

Tool Version Description

Eclipse 2.1 Tool integration framework

Storymanager 1.0.0 User story and task

management

JDT (part of

Eclipse package)

2.1 Java development

environment

Junit 3.8.1 Testing framework

CVS 1.11.2 Version management

The verification was carried out in the XP

experiment project developing mobile application
software in Eclipse environment. The project team
consisted of 5 developers and a project manager. The
project worked according to XP practices, but some of
the practices needed slight adaptation (e.g., test-first
development in mobile application is challenging)
according to the business needs.

The aim of Storymanager validation was to use the
XP project to verify our solution for requirements
management. The focus was to ensure that
requirements management support was adequately
considered in the integrated development environment
and that the solution allowed the XP project to remain
“agile” and “lightweight”. The project team was
allowed to systematically change any practices if they
felt that these did not work. Thus the project group

were trained and encouraged to “think according to XP
values”.

Quantitative and qualitative data were collected
throughout the project. The project had nominated a
person responsible for metrics, who was monitoring
that data was collected systematically. The metrics and
practices for gathering quantitative data were defined
before the project start-up. Qualitative data was
collected from the project team by using a specified
comment template. The template contained questions
about the applicability of the Storymanager solution.
The comments were processed and analyzed using Post
Mortem [34] sessions. The role of XP coach was
extended in zOmbie. The coach was also acting as a
Storymanager advisor, collecting experiences
concerning its usage. Even after the project, comments
and improvements were inquired from the project team
and coach. The inquiry performed after the project
contained the following questions, which were
formulated based on the experience that the

Storymanager was abandoned after two releases and
manual story and task management was used during
the rest of the project:
− Which were the advantages of Storymanager

compared to manual story and task management?
− Which were the disadvantages of Storymanager

compared to manual story and task management
and why was the Storymanager abandoned?

− Give other comments and suggestions for the
improvement of electronic management of user
stories and tasks?

6. Results

Table 3 presents the basic quantitative data from the
experiment. It provides basic information about the
size and schedule of the project and helps the reader to
understand the nature of the project where the
Storymanager tool was used.

Table 3. Background information about the mobile application case project

Collected data

Release 1 Release 2 Release 3 Release 4 Release 5 Correction

release

Total

Calendar time (weeks) 1 2 2 2 1 0.4 8.4

Total work effort (h) 115.3 238.9 273.2 255.6 123.7 66.8 1073.5

Planning day effort (h) 37.1 22.7 32.8 24.5 15.7 13.5 146.3

User stories implemented 3 4 5 5 1 1 19

Tasks implemented 11 25 18 18 10 10 92

The development team used Storymanager for

storing, distributing and retrieving story and task
information during the first two releases. Stories and
tasks were created, modified and maintained in
Storymanager and printed out from the system and put
on the board. After the second release, the project team
moved into manual story and task management,
because of the visualization and usability problems of
electronic story and task management. The project
manager had some experience with manual
management of user stories and tasks, which made it
possible to move from electronic to manual
management.

This section introduces the results of the interviews.
First, the project team and coach were asked to voice
their opinion about the advantages of the
Storymanager for story and task management. A
collection of answers from the zOmbie coach and team
members are presented in the following:

“Easy to operate with stories and tasks when they are
in electronic format. In manual format, story or task
modification required rewriting the whole card .”
“Integration to Eclipse enables easy access to tool.”
“Manual cards are sometimes lost, but when they are
in electronic format, they are easily accessible.”
“The use of the status attribute was easy and the color
codes were practical.”
“The customer can easily follow the implementation of
stories from a remote office using Storymanager”
“Manual archiving is not needed after a project”

Then the project team and coach were asked about
the disadvantages of Storymanager for story and task
management and they were also asked to give the
reasons for abandoning the tool. The answers received
from the zOmbie team members and coach are listed in
the following:

“Not clear. It is easier to see the Big Picture of the
project (e.g. status) when the manual story and task
cards are put on the board”
“The reports (layout of printed story/task cards) were
not good. If they were better, it would be more useful.”
“The tasks in Storymanager are in text format.
However, tasks sometimes also contain other formats
than just pure text (i.e. pictures, etc.).”
“It was difficult to move tasks between stories.”
“The usability was not good.”
“The AutoID functionality was confusing in
Storymanager.”
“More disadvantages than advantages.”

The project team and coach were also asked to give
further comments and suggestions for improvement. In

the following, a summary of answers received from
zOmbie team members and coach is presented:

“Support is needed for XP project management.”
“A tool should be easy to use.”
“It should be easy to see the Big Picture of the project
when using the tool.”
“The tool should allow moving tasks more easily
between stories.”
“The tool should allow linking tasks with application
code.”
“Printing of stories and tasks with bigger font.”

 Table 4 summarizes the advantages and
disadvantages of the Storymanager. The reasons for
moving from electronic management to manual
management and their implications are analyzed in
next section.

Table 4. Summary of the results gained from the Storymanager tool study

Perspective Results (“+” strengths,” –“ weaknesses/enhancements)

Communication + The customer can easily follow the implementation of stories from a remote office using Storymanager

+ Color codes can be used to visualize the status of the story/task on computer screen

– the Storymanager system or printed story/task reports do not make it easy to see the overall status (“big

picture”) of a project

Documentation + Manual stories or task cards need not be archived separately

– Tasks can contain just text description

– Reports are not clear (layout and font size)

Ease-to-use + It is easy to manage stories and tasks (modification)

+ Stories and tasks are easily accessible in electronic format

– General usability of the tool is not good

– Moving tasks between stories is difficult

Functionality + Integration to Eclipse enables easy access to tool and information

+ Tool provides reliable means to store, modify and retrieve information

– AutoID provides “meaningless” code for a story or task

– Support for XP project management should be added to the tool

– There should be a possibility of linking tasks with application code

7. Discussion

This section analyses the results against the analysis
framework defined in section 5.1. Agile methods, such
as XP, aim towards efficient communication and
lightweight documentation. Although some additional
or modified XP practices were used in the VTT
zOmbie-project, the basic development philosophy
relied on open communication and lightweight

documentation. As presented in related literature, [e.g.
5, 25, 35, 36], the adaptation of product information
management should be made on the basis of the
business context of a project. Thus, in this case, the
nature of the XP method drives the adaptation of
requirements management tool support. Table 5
summarizes the most important findings and their
implications.

When considering the results in section 6, it can be
noted that the developed solution for electronic
management of user stories and tasks tackles mainly
the same things as the manual one. The clear
advantages of the electronic solution compared with
manual management are related to the ability to
reliably store, modify, distribute, retrieve and archive
stories and tasks and the ability to operate in an
integrated development environment where all
development tools are available.

There are two fundamental differences between
electronic and manual management. These are related
to information visibility and usability. Open workspace
allows the project team to use paper cards for stories
and tasks and put them on the board. This allows the
team to get an overview of stories and tasks just by
having a look at the board, discussing the items and
making modifications directly to the story and task
cards. While this way of working is, in fact, highly
effective and it emphasizes natural interaction between

developers, it does require that the team members
share an open workspace. Rees [23] states that one
problem connected with using databases for managing
user stories is that they provide just poor group
visualization of all cards. Our experiment supports this
claim. Of course, electronic management also allowed
us to print the stories and tasks and then to put them on
the board. This has been suggested by Lippert et al.
[24], who first claim that a computer cannot be used
for the planning game, and then further specify that a
computer can be used just for writing stories and tasks
and printing them out on paper. However, our
experiment shows that not even this approach works, if
the editing and maintaining of printed story and task
cards takes up too much effort in fast-paced
development. Furthermore, the format of printed cards
should be highly distinct to be able to compete with
manual ones. Thus, further research is needed to
explore the possibilities for improving visualization in
electronic management of user stories and tasks.

Table 5. Findings and their implications

Perspective Findings Implications

Communication Electronic management of stories and tasks enables

remote customers and other stakeholders to view the

status of the project in real-time. Electronic

management seems to be an obvious solution when

operating in a distributed development environment but

it can jeopardize natural interaction between developers

and the visibility of information in open workspace.

Visualization of stories and tasks is a challenge and

requires further research. Furthermore, electronic

management of user stories and tasks seems to be

effective if the customer is off-site and the project is

distributed over several sites.

Documentation Electronic task cards should be able to contain also

other formats of information than text descriptions. The

format of reports should be clear.

Possibilities of integrating a drawing or modeling

tool into Storymanager and Eclipse should be

considered.

Ease-of-use Tool usability should be good in fast-paced

development.

Application development using, e.g., a User-Centered

Design approach to ensure that usability issues are

considered.

Functionality The tool should also provide additional value for daily

routines, not just automated support for the old “pen

and paper” practices.

Support for XP project management and linking

between tasks and application code should be

examined as a part of the Eclipse environment.

It also became apparent during the zOmbie-project

that electronic management should also allow other
formats of information than just pure text (e.g.
pictures, models, etc.). During the project, the
operation with models was an important part of the
work because the product being developed was

complicated. On the other hand, in the eXpert-project,
graphical modeling was not an important aspect.
Therefore, the product being developed itself seems to
affect the requirements management needs of the
project. This claim is supported, e.g., by Kotonya and
Sommerville stating that the type of system under
development affects the requirements management

solution [6]. The use of modeling in XP has been
considered by Beck [2], who argues that although
modeling can be used during the XP process, the
pictures should not be saved. We cannot, however,
agree with this proposition. If models are made, they
should be archived as any other information during the
project for maintenance reasons. On the other hand,
modeling support easily makes the Storymanager tool
complex.

If a project is distributed over several sites,
electronic management of stories and tasks seems quite
an obvious solution. This has been demonstrated by
Maurer and Martel [22], for example. However, one
problem encountered with Storymanager had to do
with its usability. In fast-paced development, the
usability should be good. It is difficult to justify tool
usage if the tool slows down the development and
requires additional maneuvers. One way of tackling
this kind of problem is to use User-Centered Design
approaches during tool development, so as to ensure
that usability issues are considered [37].

The basic problem in the Storymanager
requirements management solution is that even though
it does address the requirements management issues of
product development, it also fights against the values
of the XP method. The solution reduces simplicity and
open communication between team members when
operating in an open workspace during fast-paced
product development.

The developed automatic solution focused mainly
on the automation of manual story and task
management activities. However, Tolvanen [1] states
that, in the long run, the promise of tools does not lie
just in the automated support of old “pen and paper”
methods. Our findings support this claim.
Consequently, the aim of supporting manual
operations without providing extensive features or
significant additional value for developers proved too
narrow. Some of the comments gained from the
zOmbie project team addressed this issue. For
example, some enhancement ideas were voiced
concerning providing support for project management
using story and task efforts and related automatic
calculation, and also concerning automated traceability
between tasks and code.

8. Conclusions and future research

This paper presents the results from a study where a

requirements management tool called Storymanager
was developed to meet the needs of a fast moving XP
project. The aim of the tool was to minimize rework
and to automate time consuming paper-pen practices,

such as recording story and task items on the board.
The tool was used in a project where mobile
application software for real markets was produced.
The team abandoned the tool only after two releases.
Essentially, the tool failed to provide as powerful a
visual view as the paper-pen board method. The
developed tool also turned out to be too difficult to use
in fast-paced development environment. The interview
data further revealed that a computerized solution is
not by any means self-evident, but rather it has to be
able to compete with the best alternate solutions, i.e.
manual paper-pen approach in this case, and even
provide additional value for the project team.

The experiences, findings and implications of this
study should be of interest to any organization
considering requirements management tool support for
XP projects.

The results emphasize the role of adaptation in tool
development. The tool, constructed to support any
development method, should take into account the
underlying values of the method itself. If this is not the
case, the tool is likely to work against the nature of the
method.

Future research will be concerned with constructing
a new solution addressing the lessons learned that were
found relevant during this study. This is to be followed
by validating and enhancing the solution in future SW
development projects.

References

[1] J. P. Tolvanen, "Incremental method engineering with
modeling tools," in PhD dissertation. Jyväskylä University
Printing House and ER-Paino Ky: University of Jyväskylä,
Finland, 1998.

[2] K. Beck, Extreme programming explained: Embrace
change. Reading, MA.: Addison Wesley Longman, Inc.,
2000.

[3] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta,
Agile software development methods: Review and Analysis.
Espoo, Finland: Technical Research Centre of Finland, VTT
Publications 478.

[4] K. Beck and M. Fowler, Planning extreme
programming. New York: Addison-Wesley, 2001.

[5] I. Sommerville and P. Sawyer, Requirements
Engineering: A Good Practise Guide: John Wiley & Sons,
1997.

[6] G. Kotonya, Sommerville, I., Requirements Engineering:
Process and Techniques: John Wiley & Sons, 1998.

[7] D. Leffingwell and D. Widrig, Managing Software
Requirements - A Unified Approach: Addison-Wesley, 2000.

[8] O. Gotel, "Contribution Structures for Requirements
Traceability," in Imperial College of Science, Technology
and Medicine: University of London, 1995.

[9] O. Gotel and A. Finkelstein, "An Analysis of the
Requirements Traceability Problem," presented at First
International Conference on Requirements Engineering,
1994.

[10] L. Williams, "The XP Programmer: The Few-Minutes
Programmer," IEEE Software, vol. 20, pp. 16-20, 2003.

[11] R. Jeffries, A. Anderson, and C. Hendrickson, Extreme
Programming Installed. Upper Saddle River, NJ: Addison-
Wesley, 2001.

[12] F. Macias, M. Holcombe, and M. Gheorghe, "A formal
experiment comparing extreme programming with traditional
software construction," presented at Proceedings of the
Fourth Mexican International Conference on Computer
Science, 2003.

[13] S. Ambler, "Lessons in Agility from Internet-Based
Development," IEEE Software, vol. 19, pp. 66 - 73, 2002.

[14] M. Lippert, S. Roock, R. Tunkel, and H. Wolf,
"Stabilizing the XP Process Using Specialized Tools,"
presented at XP 2001, 2001.

[15] P. O'Brian Holt, "HCI tools, methods and information
sources," presented at IEE Colloquium on Usability Now,
1991.

[16] J. Nielsen, Usability engineering. San Francisco, CA:
Morgan Kaufmann Publishers, 1993.

[17] K. Breitman and J. Leite, "Managing User Stories,"
presented at International Workshop on Time-Constrained
Requirements Engineering (TCRE 02), 2002.

[18] J. Nawrocki, M. Jasinski, B. Walter, and A.
Wojciechowski, "Extreme Programming Modified: Embrace
Requirements Engineering Practices," presented at 10th
IEEE Joint International Requirements Engineering
Conference, RE'02, Essen, Germany, 2002.

[19] L. Wagner, "Extreme Requirements Engineering,"
Cutter IT Journal, vol. 14, pp. 34-38, 2001.

[20] I. Hooks and K. Farry, Customer-centered products :
creating successful products through smart requirements
management. New York, NY: American Management
Association, 2001.

[21] J. Koskela, J. Kääriäinen, and J. Takalo, "Improving
Software Configuration Management for Extreme

Programming: A Controlled Case Study," presented at
European Software Process Improvement, EuroSPI'2003,
Graz, Austria, 2003.

[22] F. Maurer and S. Martel, "Process Support for
Distributed Extreme Programming Teams," presented at
ICSE 2002 Workshop on Global Software Development,
2002.

[23] M. J. Rees, "A feasible user story tool for agile
software development?," presented at Ninth Asia-Pacific
Software Engineering Conference, 2002.

[24] M. Lippert, S. Roock, and H. Wolf, Extreme
Programming in Action: Practical Experiences from Real
World Projects: John Wiley & Sons Ltd., 2002.

[25] A. Leon, A Guide to software configuration
management. Boston: Artech House, 2000.

[26] I. Crnkovic, Asklund, U., Dahlqvist, A., Implementing
and Integrating Product Data Management and Software
Configuration Management. London: Artech House, 2003.

[27] A. Sääksvuori and A. Immonen, Product lifecycle
management. Berlin: Springer-Verlag, 2004.

[28] J. Kääriäinen, J. Koskela, J. Takalo, P. Abrahamsson,
and K. Kolehmainen, "Supporting Requirements Engineering
in Extreme Programming: Managing User Stories," presented
at ICSSEA 2003, Paris, France, 2003.

[29] M. Hult and S.-A. Lennung, "Towards a definition of
action research: A note and bibliography," Journal of
Management Studies, pp. 241-250, May 1980.

[30] G. I. Susman and R. D. Evered, "An Assessment of the
Scientific Merits of Action Research," Administrative
Science Quarterly, vol. 23, pp. 582-603, 1978.

[31] D. Avison, "Action research: a research approach for
cooperative work," presented at The 7th International
Conference on Computer Supported Cooperative Work in
Design, 2002.

[32] D. C. Fowler and P. A. Swatman, "Building
information systems development methods: synthesising
from a basis in both theory and practice," presented at
Australian Software Engineering Conference, 1998.

[33] P. Abrahamsson and J. Koskela, "Extreme
programming: A survey of empirical results from a
controlled case study," To be presented at ACM-IEEE
International Symposium on Empirical Software Engineering
(ISESE 2004),, Redondo Beach, CA, USA, 2004.

[34] T. Dingsøyr and G. K. Hanssen, "Extending Agile
Methods: Postmortem Reviews as Extended Feedback,"

presented at 4th International Workshop on Learning
Software Organizations, Chicago, Illinois, USA, 2002.

[35] F. Buckley, Implementing configuration management :
hardware, software, and firmware. Los Alamitos: IEEE
Computer Society Press, 1996.

[36] D. Lyon, Practical CM - Best Configuration
Management Practices for the 21st Century, 2nd ed:
RAVEN Publishing Company, 1999.

[37] A. L. Ames, "Users first! An introduction to usability
and user-centered design and development for technical
information and products," presented at Professional
Communication Conference, IPCC 2001, 2001.

