
Empirical Evaluation of Agile Software Development:
the Controlled Case Study Approach

Outi Salo and Pekka Abrahamsson

VTT Technical Research Centre of Finland,
P.O. Box 1100, FIN-90571 Oulu, Finland

{Outi.Salo, Pekka.Abrahamsson}@vtt.fi

Abstract. Agile software development, despite its novelty, is an important
domain of research within software engineering discipline. Agile proponents
have put forward a great deal of anecdotal evidence to support the application
of agile methods in various application domains and industry sectors.
Scientifically grounded empirical evidence is, however, still very limited. Most
scientific research to date has been conducted on focused practices performed
in university settings. In order to generate impact on both the scientific and
practical software engineering community, new approaches are needed for
performing empirically validated agile software development studies. To meet
these needs, this paper presents a controlled case study approach, which has
been applied in a study of extreme programming methodology performed in
close-to-industry settings. The approach considers the generation of both
quantitative and qualitative data. Quantitative data is grounded on three data
points (time, size, and defect) and qualitative data on developers’ research
diaries and post-mortem sessions.

1 Introduction

Agile software development has rapidly gained a lot of interest in the field of
software engineering. Agile methodologies [see e.g., 1], including extreme
programming (XP) [2], emphasize principles such as incremental software
development with short iterations, adaptation to changing requirements, close
communication, self-organizing teams and simplicity [3].

A fair amount of anecdotal evidence have been published on agile software
development methods in the form of descriptive articles, reports, and lessons-learned
[e.g., 4-6]. Typically, these sources argue for the effectiveness of agile methods and
their practices in specific cases. However, systematic empirical research on agile
principals and methods is still mostly missing [7]. An increasing number of empirical
evidence on agile methods and their practices (e.g. pair programming and test-first
approach) has emerged in the last few years to meet the "urgent need to empirically
assess the applicability of these methods, in a structured manner" [7, p.198].
However, there is apparent confusion among researchers concerning experimentation
per se. Experiments are often confused with case studies and vice versa. For example,
experiments seem to lack the collection and analysis of empirical data for their

Copyright 2004 Springer Verlag. Published in the Proceedings of the 5th International
Conference on Product Focused Software Process Improvement, Keihanna-Plaza, Kansai
Science City in Kyoto-Nara area, Japan.

confirmation [8]. The empirical research strategy also seems to be used in a
somewhat vague manner in these studies [cf. 9]. In other words, the strategy chosen is
not explicated, which undermines the validity of such a study. Yet there is an
empirical body of knowledge available. Most of this knowledge consists of surveys
[e.g., 7, 10, 11], case studies [e.g., 12-16] and experiments [e.g., 17-22]. These
studies provide evidence on a variety of aspects concerning agile software
development methods and techniques.

In order to generate impact on both the scientific and the practical software
engineering community, new approaches are needed for performing empirically
validated agile software development studies. To meet these needs, this paper
presents a controlled case study approach, which has been applied in a study
concerning XP methodology performed in close-to-industry settings. The approach
considers the generation of both quantitative and qualitative data. Quantitative data is
grounded on three data points (time, size, and defect) and qualitative data on
developers’ research diaries, postmortem reviews, and final interviews.

This paper is composed as follows. The following section gives a brief account of
the current state of empirical software engineering literature and identifies the main
empirical research approaches. This is followed by a presentation of the controlled
case study approach and the principal lessons-learned from the application of the
approach including empirical evidence. The paper concludes with final remarks.

2 Related literature

Empirical studies conducted in the field of software engineering aim at providing a
scientific and thus more rational basis for evaluating, predicting, understanding,
controlling and improving the tools, methods and techniques used in software
engineering [23]. The influence of assumptions and alternative explanations can be
eliminated through empirical research, which also serves for exploring and finding
explanations for new phenomena in order to develop and support new theories [24].

Empirical research includes both qualitative and quantitative research approaches.
The necessity and the diverse difficulty of empirical software engineering are
acknowledged [e.g., 23-25] while it is all too often that, in practice, the decisions are
still made without any empirical justification [8, 26]. Empirical studies include
various forms of research strategies [25] and can be categorized, for example, into
surveys, experimentations and case studies [e.g., 27]. Surveys are used for collecting
quantitative or qualitative data from a sample group of population by interviewing or
using questionnaires. Whereas case studies [e.g., 28-30] also use both qualitative and
quantitative data, experiments are purely quantitative, since their focus is on the
behavior of measurable variables. In the following, these research strategies are
discussed based on the concepts introduced by Wohlin et al. [31] and Bratthall and
Jørgensen [32].

One of the key differences between the research strategies is to be found in the
level of control. For example, "experiments sample over the variables that are being
manipulated, while the case studies sample from the variables representing the typical
situation" [31, p. 12]. The experimentation approach can be characterized as "a form

of empirical study where the researcher has a control over some of the conditions in
which the study takes place and control over the independent variables being studied"
[25, p. 456]. The control can be further divided into execution control and
measurement control. While case studies lack only execution control, the survey
approach lacks also measurement control. In addition, the research strategies also
vary regarding their research environment: while a survey can usually be conducted
as a desktop survey, an experiment is usually carried on in a laboratory or university
environment. A survey can also be conducted on-line, yet under the control of the
researcher. Case studies, on the contrary, are performed in a real-life context. The
focal project aims at producing "real" outcomes. The environment in which a case
study is performed is, however, uncontrollable. Other factors distinguishing the
research strategies from each other are investigation cost and ease of replication. The
investigation cost rises from surveys to case studies and towards large experiments
dramatically. Furthermore, surveys and experiments are easier and far cheaper to
replicate than case studies.

The case study approach enables an investigation of extensive phenomena,
providing data about, e.g., an entire process or a project. However, the unique nature
and uncontrollability of variables tend to cause problems in the generalization of
results. Any findings can thus be blamed for "unknown confounding factors", and it
is difficult to compare the results [33] as is also their interpretation [27]. The multiple
case study approach [34] attempts to address these problems to a certain degree. Yet,
the costs of this approach are often significantly higher than those of a single case
study, the ability to perform replication reliably is not necessarily guaranteed, and the
confounding factor problem and interpretation challenges remain as well.

The research perspective of experiment is usually relatively limited. The focus is
on viewing the behavior of a specific set of variables in a defined context. As the
experiments are usually conducted in a laboratory or classroom settings they have
been criticized for being too unrealistic to allow their results to be transferred to
industry [e.g. 33, 39]

Action research [35] can be seen as one form of case study [36]. It focuses more
on what practitioners do rather than what they say they do. Moreover, action research
produces knowledge for guiding practice [37], which is the principal aim of any
empirical research. Unlike in the case study approach, in action research the
modification of reality requires a possibility to intervene [38]. Yet, action research
has similar limitations to those in the case study approach regarding the
generalization of research results, and it may be even more costly due to the fact that
it requires action taking and monitoring.

The rallying points of the empirical research strategies described above are to be
found in their scientific and systematic approach and concern with quantitative data
[27], and their strategy of seeking and validating research results through data
collection, analysis and interpretation. In order to overcome the inadequacies of the
different empirical research strategies various solutions have been proposed. Wohlin
et al. [27] encourages a simultaneous use of different research methods. An interplay
of various research strategies is likely to yield the most benefit [40]. Therefore, using
experiments to complement case studies is often suggested [33]. As stated above,
conducting multiple case studies is rarely possible because of the high costs and the

difficulty of finding similar enough cases [32]. However, multiple data sources
should be used in case studies to provide a higher degree of validity [32].

Wohlin et al. [27] have proposed some guidelines for deciding between the
experiment and the case study approach. Since both approaches are suitable for
comparing two software engineering methods, the choice depends on the scale of the
evaluation. Wohlin et al. [27] argue that a case study suits industrial evaluations
particularly well for the reason that it enables avoiding scale-up problems and the
study itself is capable of detecting a more widespread and long-term impact. The
experiment, again, should be chosen as the research approach if the research is more
concerned with studying the reasons for certain phenomena or evaluating the
differences between two or more methods.

Table 1 presents the phases (first column) and tasks (second and third columns,
respectively) of the different empirical research strategies. In Column 2, the Quality
Improvement Paradigm (QIP) [41] approach for conducting empirical studies [27] is
described. The steps are drawn from [31, 42]. The last column presents the case study
research approach according to Eisenhardt [43].

Table 1. Empirical research approaches presented in literature

Generic phases of
empirical research

Experimental research Case study research

Characterize
Current Situation/Baseline setting
Topic selection
Background research

Getting started
Definition of research question
Possibly a priori constructs
Neither theory nor hypothesis

Set Goals
Formulation of goal in a
quantifiable manner

Selecting cases
Specific population
Theoretical, not random, sampling

Design

Choose Process
Setting of research context
Formulating hypothesis
Determining variables
Identifying subjects
Setting of instrumentation

Crafting instruments and protocols
Multiple data collection methods
Qualitative and quantitative data
combined
Multiple investigators

Execute
Prepare study
Execute study (collect the data)
Validate data

Entering the field
Overlap data collection and analysis
Flexible and opportunistic data
collection methods

Implementation

Analyze
Perform statistical analysis
Visualize analysis results
Study outcomes
Accept/reject hypothesis and draw
conclusions

Analyzing data
Within-case analysis
Cross-case pattern search using
divergent techniques

Shaping hypothesis
Iterative tabulation of evidence for each
construct
Replication, not sampling, logic across
cases
Search evidence for "why" behind
relationships

Learning Package
Report findings
Store data & analysis for further use

Enfolding literature
Comparison with conflicting literature

Generic phases of
empirical research

Experimental research Case study research

Comparison with similar literature
Reaching closure
Theoretical saturation when possible

The traditional empirical research approaches (Table 1) serve their purpose in a

wide range of research domains. Agile software development is, however,
characterized by rapid iterative cycles and continuous changes in the process and in
the product requirements. If the empirically validated scientific data about agile
software development is to be generated, the research approach needs to be able to
adapt to these settings. This creates the need to effectively combine the experimental,
case study and action research approaches. This paper proposes a combined
approach, i.e. a controlled case study approach, which will be presented in the
following section.

3 A Controlled Case Study Approach

In this section the controlled case study approach is presented. It represents a research
approach that, for one thing, is particularly suitable for the study of agile
methodologies and, for another, generates impact on both scientific and practical
software engineering communities. In conjunction with the introduction of the
approach, an empirical case is laid out in which the approach has been applied. This
facilitates understanding how the approach is designed to work when conducting
research on agile software development.

The controlled case study approach was applied in a software development project
called eXpert, in which a team of four developers implemented a system for
managing the research data obtained over years at a Finnish research institute (section
4). The research goal of the study was two folded. First, the aim was to empirically
evaluate the Extreme Programming (XP) method in practical settings. Second, the
research aimed at applying the controlled case study approach in order to assess its
suitability for studying agile methodologies. The details of the study can be found in
[12].

While the controlled case study approach strives for replication (experimentation)
and in-depth data collection (case study), it also has the ability to change the process
(action research) in a close-to-industry setting in which also business pressure is
present. It therefore contains some of the features typical of laboratory experiments,
such as a high degree of control over independent variables, execution and
measurement, and environmental conditions. Furthermore, the ease of replication of
the controlled case study approach is currently under scrutiny in a connection with a
replication of the approach being executed at the moment.

A particularly interesting issue regarding the controlled case study approach is to
be found in the dual goal structure of the outcome: 1) fully functional software
system or a software product, and 2) research data on selected aspects. Accordingly,
the focus of the research is on evaluating the entire process of software development

when using Extreme Programming or some other agile approaches as the
development method. The research considers both quantitative and qualitative data
and respective data collection techniques.

Figure 1 presents the dynamics, relationships and phases of the proposed research
approach designed for the evaluation of agile software development methods in
practical settings. It is an iterative research approach incorporating an effective
utilization of multiple research methods. These are the experimental and case study
research strategies supplemented with the action research [see e.g., 44] perspective.

Design
in vivo

Implementation

Learning

Dissemination

8 weeks

Implementation

Dissemination

8 weeks

Design
in vitro

Post-
Learning

Design
in vivo

Design
in vitro Learning Post-

Learning

2-4 months

......
1-2 weeks cycles 1-2 weeks cycles

ResearchNeeds

Bus
ine

ss
Nee

ds

Business
Needs

Fig. 1. Controlled case study approach

The phases, steps and outcomes of the empirical research strategy are presented in
the following sub-sections. It will also be explained how the different phases and
steps were applied in the empirical study (eXpert).

3.1 Design-phase

The design phase is divided into a design in vitro and design in vivo phases. The
design in vitro phase occurs prior to the project under research. It initializes the
research and enables setting the focus on the most relevant topics in terms of both
business and research. It also includes the steps that need to be done only once during
the research such as identification of the research needs and selection of subjects, and
that does not yet involve the subjects of the study, i.e. the project team in this case.
The design in vitro is intended to last from one to few months at the most.

The in vivo design phase is a fixed part of the software development project under
research. It is iteratively applied at the beginning of every 1-2 week development
cycle (Fig. 1). These cycles need to be synchronized with the actual iterations of the
agile software development process. This ensures the ability to refocus the research,
to identify additional measures and variables, and to improve data collection
techniques, for instance, during the project.

Table 2 presents the steps and outcomes of the design phase of the controlled case
study approach.

Table 2. Design phase steps and outcomes

Design phase Steps Outcome
Identification of research and business needs List of potential topics

Background research

Topics with the highest scientific
and business impact

Target setting Goal of current research
Background research/Baseline setting Current knowledge on chosen

topic
Setting of research context
Multiple investigators

Research environment
Researchers and other research
parties involved

Design in vitro

Identifying subjects using theoretical (not
random) sampling

Target project, project members

Neither theory nor hypothesis: Determining
variables
Multiple data collection methods: Qualitative
and quantitative data

Preliminary variables
Updated variables
Plan for data collection

Design in vivo

Setting of instrumentation

Data collection tools
Project documentation templates
Training material/Standards
Software development tools

In the in vitro design phase the needs of both research and industry are determined

to support the eventual topic selection. The needs are further elaborated on the basis
of preliminary background research (e.g. desktop research). The eXpert project was
preceded by an extensive literature review of agile/XP methods [45], highlighting
potential research topics. Once the topic for the current research has been selected, a
focused background research may be needed. In the eXpert study this included
mapping the empirical research done in the field of agile software development
methods. This survey revealed that there was very little empirical evidence available
of the applicability of agile/XP processes, though some experiments and case studies
had been performed regarding certain practices. Therefore, the goal of the research
was set: to evaluate the XP software development process as a whole, and to set a
baseline for future replications and more focused research endeavors.

Goal setting was followed by setting the research context. This phase includes
selecting the environment for the research project and defining the research parties
participating in the process. In addition, the subjects for the research are chosen. In
the eXpert project, convenience sampling [31] was used for selecting the nearest and
most convenient subjects for the study. In our case, this meant selecting the most
experienced of the university students available to be included in the project team.
The reason for this was that it was concluded that the validity of the research
conducted with experienced students would be comparable with research conducted
with practitioners in industry [e.g., 46].

Though no hypotheses are yet set, the variables and methods for their collection
need to be defined at the beginning of the in vivo design phase (i.e., at the beginning
of each iteration). Multiple data collection methods are recommended for multiple
sources of information [32]. In eXpert, the applied qualitative data collection methods
included group interviews, postmortem reviews and developer's diaries. Quantitative

data was grounded on three data points: Time, size and defect as suggested by
Humphrey [47]. Time was tracked by minute on XP practices and tasks, size was
tracked in terms of lines of code and defects were categorized and recorded
systematically. Thus, the generation of both qualitative and quantitative research data
was ensured.

Finally, the instrumentation is chosen and prepared, including data collection tools,
project documentation templates, standards, training material and guidelines as well
as the physical facilities and technical implementation environment for the target
project. In vivo design requires the ability to identify and develop new data collection
mechanisms and to fine-tune the existing ones if needed. In principal, the controlled
case study approach calls for redirecting the research in a systematic, controlled and
recorded fashion.

3.2 Implementation phase

The implementation phase is very intense taking only eight weeks. The time frame
and developer effort usage are therefore fixed. Flexibility is reserved for delivered
functionality, which is in accordance with the principles of agile software
development. The aim of software development project is to produce a fully
functional software system or a software product1 for an actual customer. The
research process itself focuses on collecting qualitative and quantitative research data,
which can be used for several purposes. The research data, in the optimum case,
benefits the team as well. While the researchers are mainly interested in studying the
agile software development process or some specific part of it, the team can (and
should) use the data for software process improvement (SPI) [48]. If the team does
not find the data useful, the data collection, even if carefully followed, is bound to
become error-prone, as it has been the case in personal software process (PSP)
research [e.g., 49]

Implementation begins with the finalization of instrumentation (i.e., data collection
devices) and training the subjects into their tasks, i.e. the agile development process
under investigation, software development tools and data collection procedures.
Training should not take more than 2 days. The actual implementation time data
collection is performed on a daily basis using the simplest possible mechanisms. In
eXpert, paper, pen and a notebook was used. This was supplemented with a set of
simple spreadsheets. The validity of quantitative data is continuously monitored
during the project by the project manager, metrics responsible, on-site customer, and
the management of customer organization. Data is collected not only for storing
purposes but it is also actively used via analysis and visualization mechanisms. This
enables the analysis to overlap the collection process in an effective and iterative
manner.

Table 3 presents the steps and outcomes of the implementation phase in the
controlled case study approach.

1 Due to time constraints the systems or products produced are relatively small in terms of size

and effort use, e.g. less than 10000 lines of code or 1000-1500 hours of development effort.

Table 3. Implementation phase steps and outcomes

Steps Outcomes
Preparing study

Training
Infrastructure: Installing of tools,
development of templates

Executing study Collected research data

Solving business problem Working software system

Validating data Validated research data

Implementation
phase

Analyzing and visualizing the data from
current iteration/Overlapping data collection
and analysis/Iterative tabulation of evidence
for each construct

Analyzed data
Visualized data

3.3 Learning Phase

The learning phase is divided into learning and post-learning phases (Fig. 1.). The
learning phase includes the steps taken during the software development process at
the end of every iteration in the Agile process. The post-learning phase takes place
only after the actual intense software development process, when all the research data
is available. Thus, the learning phase is concerned with improving the current
software development process as well as the research process whereas the post-
learning process aims at systematic dissemination of research data.

Table 4. presents the steps and outcomes of the learning and the post-learning
phases of the controlled case study approach.

Table 4. Learning phase steps

Learning phase Steps Outcomes
Post-mortem reviews/analysis

Learning

Interpretation of analyzed and
visualized data from the previous
iterations

Suggestions for process enhancement
Process enhancements
Experiences of the process
Feedback for following in vivo design
phase as e.g. suggestions for data
collection improvement

Group interview
Analyzing and visualizing data from
entire project (quantitative and
qualitative)
Store data & analysis for further use
Draw conclusions/Theoretical
saturation when possible
Report findings/Dissemination
Identification of future research
opportunities

Post-Learning

Possible involvement of external
researchers for data analysis on new
perspectives

Developer insights, experiences
Generalizations & conclusions
 => scientific dissemination
 => industrial application
Replications & New controlled case study
research projects
Enhanced controlled case study process

The principal mechanism of the learning phase includes postmortem reviews [29],
and learning through analyzing and interpreting the collected data. Postmortem
reviews are used for enhancing the XP software development process according to
the experiences of the related stakeholders in the project. The postmortem review
aims at detecting positive and negative issues vis-à-vis the previous iteration. In this
phase, the software developers may propose various alterations, which are prioritized
and agreed on. In eXpert, the postmortem reviews recurred five times, i.e. after every
iteration. The postmortem review was used not only for enhancing the practices of the
software development project but for adapting the research mechanisms to the
project. For example, data collection tools were improved and variables were
advanced during the project.

The post-learning phase includes several steps designed to feed the next project
and to analyze collected data for dissemination purposes. For example, a group
interview is conducted to survey the experiences of software developers. All data
sources, such as post-mortem session recordings, interviews, spreadsheets and
developer's diaries are analyzed and the outcomes stored for further use. Further use
also includes identification of the most efficient ways of utilizing collected data. It is
often only after the project has ended that some of the data use possibilities are
detected. Data analysis may also include the involvement of external researchers
enabling the investigation of data from their perspective, which is likely to encourage
cooperation between different researchers and promote future studies. While this may
be regarded as a radical suggestion, it is based on the assumption that case studies of
this sort yield more data than a single team of researchers can utilize effectively.

The aim of the post-learning phase is to generate knowledge for scientific and
practical use alike. The post-learning phase also enables an explicit consideration of
alterations to the research process, which is why this phase lends itself to launching
the planning for the following research projects.

4 Applying the Controlled Case Study Approach: Lessons-learned

The controlled case study approach was applied in the eXpert software development
project to evaluate its suitability for researching agile software development
methodologies. The lessons-learned section identifies the principal issues that can be
used for improving the proposed approach.

Design phase
The training material and the implementation plan were the principal issues that were
documented prior to the launching of the project. This was seen as an effective means
of ensuring sound kick-off for the project, and the documentation was also considered
something that could be effectively re-used in subsequent replications. The most
important finding of the in vitro design phase was the sampling of project members.
The validity of research with students is, to a high degree, dependent on their level of
knowledge concerning software engineering practices [46]. Recruiting more
experienced subjects would thus be worth some effort in advertising and persuasion.
The qualitative and quantitative research data from the postmortem reviews and final

interviews revealed that detailed instructions, e.g. coding standards, should have been
created for the project team prior to the project, i.e. in the design in vitro phase.

The in vivo design phase proved to be an efficient means of improving the data
collection capabilities. The postmortem analysis [50] technique – an improvement
and reflection device - which was used for evaluating the project after each software
release was found an effective way of identifying issues that needed improvement,
not only from the practical business perspective but also from research point of view.
The post-mortem analysis is performed in the learning phase and it feeds into the
design in vivo phase. For example, it was identified that team presence was something
that could have an influence on the project outcome. The team presence factor
indicated the time spent within project facilities, since no work was to be performed
outside. This was realized quite early (after the first release) and appropriate measures
were taken, i.e. proper instrumentation, to ensure that also this data point was
captured throughout the project.

As an example, postmortem findings on time tracking were found to be directly
related with the research data collection. During the project, a total of 14 negative and
4 positive comments were given on time tracking. These comments led to various
enhancements made in recurring in vivo design phases. For example, improvements
were made on data collection instructions to ensure a higher degree of data reliability.
The spreadsheet used for collecting working hours was also updated with additional
column for tasks not related to actual project work, such as coffee breaks.

The exploratory approach to data collection resulted in a more extensive base for
establishing the baselines of agile methodologies. Instead of concentrating on just one
practice at a time, e.g. pair programming, data collection covered the whole process
and provided data for a broad spectrum of analysis.

Implementation phase
It was found encouraging for the developers to realize that collected data was
monitored on a daily basis by several stakeholders. In fact, this proved to underline
the importance of data collection and researcher commitment, thus reducing the
amount of missing data. Rapid monitoring also revealed various forms of ambiguous
data, which could then be immediately revised together with the developers, and
either corrected or interpreted more accurately. Based on the experiences gained, the
key to success here is the ability to incorporate developers as co-researchers with
their own research agenda and interest. In the eXpert case, the developers were
responsible for investigating the effect of postmortem review technique within the
context of extreme programming.

Yet, it should be emphasized that the principal goal and outcome of the
implementation phase is working software. The data should work to yield benefits
and not to hinder the progress of the team in practice.

Learning phase
Although it would have been beneficial to use the data also for software process
improvement purposes, this was not achieved in the eXpert project. Due to the focus
being mainly on the research aspect, process improvement relied on postmortem
reviews only. Moreover, the postmortem review results are solely based on related

stakeholders’ experiences and opinions. Even though they are valuable as such, they
are deemed to fall short without proper tracking mechanisms and therefore lack data
for their confirmation. To ensure and improve this aspect of the controlled case study
approach, it is suggested that the learning phase is complemented with on-time
explicit data interpretation sessions with software developers. These can be embedded
in postmortem review sessions. Due to the tight implementation schedule, this may,
however, prove difficult.

Regarding postmortem reviews, the bottom-line is the monitoring of whether the
suggested and agreed process changes were actually carried out. It is worthwhile to
record all the postmortem reviews and also to monitor whether the findings are still
valid after the next iteration.

The time reserved for post-learning was a few months, which was found to be too
short for effective dissemination. The eXpert-project results are currently being
disseminated as the replication study is already in progress. The danger lies in mixing
the results of one study with those of another. Thus, explicit emphasis needs to be
placed on research discipline. It also needs to be noted that the number of research
perspectives one can manage is limited and there will always be data that remains un-
analyzed for a long period of time, which is thus in danger of becoming obsolete.

The learning phase, especially postmortem reviews, proved a useful mechanism
for improving not only the software development process but also the research
process during the project.

5 Conclusions

While agile software development methods have gained wide-spread interest in the
field of software engineering, an empirical validation of the ideas presented by agile
proponents is very limited. It was claimed that if Agile solutions were to generate
impact on both the scientific and practical software engineering community, new
approaches to empirically validated agile software development studies would be
needed.

To meet these needs, this paper presented a controlled case study approach. The
novelty to be found in this approach is twofold: It produces working software and it
combines several research strategies aiming at producing valid research data on
selected research topics. Both goals need to be treated as equally important or else the
close-to-industry setting will not apply. The approach is drawn from experimentation
(strives for replication), case study (strives for in-depth nature) and action research
(strives for detecting and reacting to changes in the process). The controlled case
study approach is explicitly designed to meet the needs of agile software development
research: this is done by placing emphasis on the iterative and incremental nature of
software development in very short development cycles. The approach considers the
generation of both quantitative and qualitative data. Quantitative data is grounded on
three data points (time, size, and defect) and qualitative data on developers’ research
diaries, postmortem sessions, and final interviews.

The controlled case study approach was applied in order to be validated in an XP
case study. The results of the case study are in the process of being disseminated at

present and another project code-named zOmbie is currently in progress. Plans are
already being made for a third replication. While eXpert and zOmbie have been
conducted predominantly with student subjects, future studies have been designed to
include representatives of industry developing their own software in a specified
research setting.

Although the approach presented in this paper strives to increase the degree of
measurement and execution control in close-to-industry settings, it does not overcome
the principal limitation of case studies – the inability to generalize results. Pure
experiments and traditional case studies are also definitely needed and called for in
the area of agile software development. It is, however, claimed by the authors, that it
is the interplay of all these approaches that will yield better results in the scientific
community for the benefit of software industry. For example, the pair programming
technique is currently undergoing a series of empirical investigations in terms of
planned experiments in different parts of the world. Using the controlled case study
approach we are able to test, verify and invalidate (or validate) parts of the findings
made in these studies. This is especially the case when investigating the longer term
impact of a particular technique and its interplay with other techniques in the
industrial context. It would be more difficult to do this in a purely experimental
setting. Furthermore, the in-depth nature of the controlled case study approach
enables the identification of procedures, processes, techniques and methods that could
be placed under experimental evaluation.

References

[1] B. Boehm and R. Turner, Balancing Agility and Discipline: A Guide for the Perplexed:
Addison-Wesley, 2003.

[2] K. Beck, Extreme Programming Explained: Embrace Change: Addison Wesley
Longman, Inc., 2000.

[3] A. Cockburn, Agile Software Development. Boston: Addison-Wesley, 2002.
[4] P. Schuh, "Recovery, Redemption, and Extreme Programming," IEEE Software, vol.

18, pp. 34-41, 2001.
[5] J. Rasmusson, "Introducing XP into Greenfield Projects: Lessons Learned," IEEE

Software, pp. 21-28, 2003.
[6] O. Murru, R. Deias, and G. Mugheddu, "Assessing XP at a European Internet

Company," IEEE Software, pp. 37-43, 2003.
[7] M. Lindvall, V. R. Basili, B. Boehm, P. Costa, K. Dangle, F. Shull, R. Tesoriero, L.

Williams, and M. V. Zelkowitz, "Empirical Findings in Agile Methods," presented at
XP/Agile Universe 2002, Chicago, IL, USA, 2002.

[8] M. V. Zelkowitz and D. R. Wallace, "Experimental Models for Validating
Technology," Computer, pp. 23-31, 1998.

[9] J. Noll and D. C. Atkinson, "Comparing Extreme Programming to Traditional
Development for Student Projects: A Case Study," presented at XP2003, Genova, Italy,
2003.

[10] B. Rumpe, "Quantitative Survey on Extreme Programming Projects," presented at
XP2002, Alghero, Sardinia, Italy, 2002.

[11] B. Tessem, "Experiences in Learning XP Practices: A Qualitative Study," presented at
XP2003, Genova, Italy, 2003.

[12] P. Abrahamsson, "Extreme Programming: First Results from a Controlled Case Study,"
presented at 29th Euromicro Conference, Belek-Antalya, Turkey, 2003.

[13] D. Karlström, "Introducing Extreme Programming - An Experience Report," presented
at XP 2002, Alghero, Sardinia, Italy, 2002.

[14] F. Maurer and S. Martel, "On the Productivity of Agile Software Practices: An
Industrial Case Study,"., 2002.

[15] M. M. Müller and W. F. Tichy, "Case Study: Extreme Programming in a University
Environment," presented at 23rd International Conference on Software Engineering,
Toronto, 2001.

[16] W. A. Wood and W. L. Kleb, "Exploring XP for Scientific Research," IEEE Software,
pp. 30-36, 2003.

[17] A. Janes, B. Russo, P. Zuliani, and G. Succi, "An Empirical Analysis of the
Discontinuous Use of Pair Programming," presented at XP2003, Genova, Italy, 2003.

[18] S. Heiberg, U. Puus, P. Salumaa, and A. Seeba, "Pair-Programming Effect on
Developers Productivity," presented at XP2003, Genova, Italy, 2003.

[19] K. M. Lui and K. C. C. Chan, "When Does a Pair Outperform Two Individuals?,"
presented at XP2003, Genova, Italy, 2003.

[20] M. M. Müller and O. Hagner, "Experiment about Test-first programming," Software,
vol. 149, pp. 131-135, 2002.

[21] L. Williams, R. R. Kessler, W. Cunningham, and R. Jeffries, "Strengthening the Case
for Pair Programming," IEEE Software, vol. 17, pp. 19-25, 2000.

[22] M. Rostaher and M. Hericko, "Tracking Test First Pair Programming - An
Experiment," presented at XP/Agile Universe 2002, Chicago, IL, USA, 2002.

[23] V. R. Basili, R. W. Selby, and D. H. Hutchens, "Experimentation in Software
Engineering," IEEE Transactions on Software Engineering, vol. SE-12, pp. 733-742,
1986.

[24] W. F. Tichy, "Should Computer Scientists Experiment More?," Computer, pp. 32-40,
1998.

[25] V. R. Basili and F. Lanuble, "Building Knowledge through Families of Experiments,"
IEEE Transactions on Software Engineering, vol. 25, pp. 456-473, 1999.

[26] N. Fenton, "Viewpoint Article: Conducting and Presenting Empirical Software
Engineering," Empirical Software Engineering, vol. 6, pp. 195-200, 2001.

[27] C. Wohlin, M. Höst, and K. Henningsson, "Empirical Research Methods in Software
Engineering," in Empirical Methods and Studies in Software Engineering, Lecture
Notes in Computer Science, R. Conradi and A. I. Wang, Eds.: Springer, 2003, pp. 7-23.

[28] A. Birk, Dingsøyr, T., Stålhane, T., "Postmortem: Never Leave a Project without It,"
IEEE Software, vol. 19, pp. 43-45, 2002.

[29] T. Dingsøyr, Hanssen, G. K., "Extending Agile Methods: Postmortem Reviews as
Extended Feedback," presented at 4th International Workshop on Learning Software
Organizations (LSO'02)), Chicago, Illinois, USA, 2002.

[30] B. Collier, DeMarco, T., Fearey, P., "A defined process for project post mortem
review," IEEE Software, vol. 13, pp. 65-72, 1996.

[31] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in Software Engineering. Boston: Kluwer Academic Publishers, 2000.

[32] L. Bratthall and M. Jørgensen, "Can you Trust a Single Data Source Exploratory
Software Engineering Case Study?," Empirical Software Engineering, vol. 7, pp. 9-26,
2002.

[33] D. I. K. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen, A. Karahasanovic, and
Vokác, "Challenges and Recommendations When Increasing the Realism of Controlled
Software Engineering Experiments," in Empirical Methods and Studies in Software

Engineering, Lecture Notes in Computer Science, R. Conradi and A. I. Wang, Eds.:
Springer-Verlaag, 2003, pp. 24-38.

[34] R. K. Yin, Case Study Research Design and Methods, 2nd ed: Sage Publications, 1994.
[35] D. Avison, F. Lau, M. Myers, and P. A. Nielsen, "Action Research," Communications

of the ACM, vol. 42, pp. 94-97, 1999.
[36] J. B. Cunningham, "Case study principles for different types of cases," Quality and

quantity, vol. 31, pp. 401-423, 1997.
[37] P. Oquist, "The epistemology of action research," Acta Sociologica, vol. 21, pp. 143-

163, 1978.
[38] G. I. Susman and R. D. Evered, "An Assessment of the Scientific Merits of Action

Research," Administrative Science Quarterly, vol. 23, pp. 582-603, 1978.
[39] C. Potts, "Software-Engineering Research Revisited," IEEE Software, vol. 10, pp. 19-

28, 1993.
[40] A. Kaplan, The conduct of inquiry: Methodology for behavioral science. New York:

Chandler, 1964.
[41] V. R. Basili, "Software Development: A Paradigm for the Future," presented at

COMPSAC '89, Orlando, Florida, 1989.
[42] T. Sandelin and M. Vierimaa, "Empirical Studies in ESERNET," in Empirical Methods

and Studies in Software Engineering, Lecture Notes in Computer Science, R. Conradi
and A. I. Wang, Eds.: Springer, 2003, pp. 39-54.

[43] K. Eisenhardt, "Building Theories from Case Study Research," Academy of
Management Review, vol. 14, pp. 532-550, 1989.

[44] C. Eden and C. Huxham, "Action Research for the Study of Organizations," in
Studying Organization: Theory & Method, S. R. Clegg and S. Hardy, Eds. London:
SAGE Publications Ltd, 1999, pp. 272-288.

[45] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, "Agile Software Development
Methods: Review and Analysis," VTT Electronics, Espoo VTT Publications 478, 2002.

[46] M. Höst, B. Regnell, and C. Wohlin, "Using Students as Subjects - A Comparative
Study of Students and Professionals in Lead-Time Impact Assessment," Empirical
Software Engineering, vol. 5, pp. 201-214, 2000.

[47] W. S. Humphrey, A discipline for software engineering: Addison Wesley Longman,
Inc., 1995.

[48] S. Zahran, Software Process Improvement: Practical Guidelines for Business Success:
Addison-Wesley, 1998.

[49] P. M. Johnson, "The personal software process: A cautionary case study," IEEE
Software, vol. 15, pp. 85-88, 1998.

[50] T. Dingsøyr, Moe, N.B., Nytrø, Ø., "Augmenting Experience Reports with Lightweight
Postmortem Reviews," presented at 3rd Int'l Conference on Product Focused Software
Improvement (Profes 01), Kaiserslautern, Germany, 2001.

