
Copyright LNCS. Ronkainen, J. and Abrahamsson, P. (2003) Software development under stringent
hardware constraints: Do agile methods have a chance? In XP 2003, Genova, Italy

Software Development Under Stringent Hardware
Constraints: Do Agile Methods Have a Chance?

Jussi Ronkainen, Pekka Abrahamsson

VTT Technical Research Centre of Finland
P.O. Box 1100

FIN-90570 Oulu, Finland

Jussi.Ronkainen@vtt.fi, Pekka.Abrahamsson@vtt.fi

Abstract. Agile software development methods have been suggested as
useful in many situations and contexts. However, only few (if any) exp e-
riences are available regarding the use of agile methods in embedded
domain where the hardware sets tight requirements for the software.
This development domain is arguably far away from the agile home
ground. This paper explores the possibility of using agile development
techniques in this environment and defines the requirements for new
agile methods targeted to facilitate the development of embedded soft-
ware. The findings are based on an empirical study over a period 12
months in the development of low-level telecommunications software.
We maintain that by addressing the requirements we discovered, agile
methods can be successful also in the embedded software domain.

1 Introduction

Agile software development methods have captured the interest of academia and
practitioners alike in the past few years. Common to the methods are the prospects of
shorter lead-times, responsiveness to changes even late in the development cycle, and
the promise of a continuous stream of functioning software releases from the very
beginning on.

While many agile methods have been introduced (for an overview, see e.g. [1]),
none of them are specifically targeted for the development embedded software. In fact,
the characteristics that describe the ideal surroundings for an agile method to work
best – its home ground (identifiable customer, co-located development, no more archi-
tecture design than immediately needed, object-oriented development environment,
e.g. [2]) – describe the opposite of hardware-bound embedded software development.
How, then, would agile development methods fit in a situation where the amount of
code is not the primary scaling factor, but rather issues of performance, software reli-

Copyright LNCS. Ronkainen, J. and Abrahamsson, P. (2003) Software development under stringent
hardware constraints: Do agile methods have a chance? In XP 2003, Genova, Italy

ability and constantly changing hardware requirements? This is especially the case
when developing embedded systems in the telecommunications sector.

To date, there is a limited amount of literature or experiences available regarding the
use of agile software development principles and methods in the domain of embedded
software development. Yet, the electronics industry is the fastest growing industry
sector in Europe.

Grenning [3] proposed using Extreme Programming [4] in the development of em-
bedded software, but in the development he described the hardware was not a major
player in the product development until late in the project. In the environment we
studied, however, the hardware is available already at an early stage of a project,
causing much change into the software development.

We base our work on an empirical study performed in a tightly hardware-bound en-
vironment where the aim was to improve the existing processes. The details of the
study can be found in [5]. Drawing from this experience we analyze the prospects of
using state-of-the-art agile methods in developing embedded software under tight
hardware constraints. On this basis, we finally define the requirements for new agile
methods targeted fit for this domain of software development.

The paper is composed as follows. In the next section, four essential characteristics
of embedded systems development are identified and analyzed from the agile software
development viewpoint. Based on this analysis, then, the requirements for increasing
the level of agility in the embedded systems domain are identified.

2 Embedded Software Development: Characteristics Effecting
Agility

Embedded software can be found in a wide variety of applications. The environment,
requirements and constraints for different types of software in a single system vary.
We focus on the problems in writing software that directly accesses hardware.

Our specific interest is in digital signal processing applications, which is a very
common problem domain in the telecommunication industry sector. Data processing in
such systems typically uses digital signal processors (DSPs) and application-specific
integrated circuits (ASICs). They are used in performing computationally intensive
signal processing tasks. DSP software allows flexibility in implementation and makes it
possible to update the system through new software releases. The most intensive
mathematical tasks are implemented in the ASICs.

The development of embedded systems is characterized by the need to develop
software and hardware simultaneously [6]. This concurrent work is known as co-
design. In our case, this means that the DSP software and ASICs are concurrently
under development. The simultaneous development means that overall system func-
tionality is constantly balanced between hardware and software implementation. This
software is called ”hardware-related”. The concept of co-design in such a case is illus-
trated in Figure 1.

Copyright LNCS. Ronkainen, J. and Abrahamsson, P. (2003) Software development under stringent
hardware constraints: Do agile methods have a chance? In XP 2003, Genova, Italy

The dynamics of co-design – i.e. the way it effects the concurrent software devel-
opment processes, has to be understood in order to enable the use of agile software
development methods.

Application SW Development

System Integration
System
Design System Ready

HW & Related SW Development

HW Development

SW Development

Constant communication

Interconnected
testing and
verification

Fig. 1. Co-design timeline example [5]

2.1 Meeting the Hard Real-Time Requirements Is the Number One Priority

The environment in which the software runs imposes several strict requirements for
the software. Some of the most essential requirements concern performance. Embed-
ded systems often have to perform tasks within a time slot defined by e.g., a telecom-
munication standard. If failing to comply to the timing and performance requirements
results in a risk to further system operation or in other considerable, non-correctable
errors, the real-time requirements are said to be hard [7]. In hardware-related software
development, the hard real-time requirements are visible most concretely in the con-
stant need to verify the proper co-operation of DSP software and the ASIC hardware
the software drives. This causes that hardware simulators are an essential tool during
DSP software development.

The use of hardware simulation also makes it possible to make the final split be-
tween hardware and software functionality at a fairly late stage during development.
From a software development viewpoint this means that the requirements for hard-
ware-related software cannot be frozen before development work begins. Other nota-
ble technological constraints that cause changes during development are those of
memory and power consumption. Therefore, the development method, by necessity,
has to have some kind of mechanism to cope with changes in requirements during
development.

A considerable deal of architecture development is practically mandatory in com-
posing the functionality for the system. Some of the architecture emerges through
experience gained during development, but preliminary architecture design cannot be
avoided. Most agile methods do not encourage this. Furthermore, software design in
embedded systems is largely driven by current and expected performance issues,
rather than constantly added new functionality. Therefore, the concept of using ”the

Copyright LNCS. Ronkainen, J. and Abrahamsson, P. (2003) Software development under stringent
hardware constraints: Do agile methods have a chance? In XP 2003, Genova, Italy

simplest solution that could possibly work” (stated, e.g., as the “YAGNI” principle in
XP [4]) must be stretched somewhat.

Another key issue is refactoring. This practice of customary rearrangement and
clean-up of code in order to simplify it or to make it more understandable is an every-
day practice in, for example, Extreme Programming. Refactoring high-speed hardware-
related code is, however, hazardous. The interactions between the software and the
hardware are very sensitive to changes in timing. Changes in code – even if the code
logically remains the same – may cause slight changes in timing or other behavior,
which turns into bugs that are very difficult to detect. The negative effects of refac-
toring can be alleviated through pervasive use of software configuration management
and relentless testing, but the latter has its own problems, as will be shown later.

2.2 Experimenting Is a Part of the Development

The way the technological constraints (performance, power and memory consumption,
etc.) effect code is impossible to tell exactly without hands-on experience. Therefore,
the more complex the software-hardware interactions, the more the developers will
experiment. This is not quite unlike the use of spike solutions in XP or prototyping in
general. The difference in hardware-related software development is that the amount of
code that is generated through experimenting is very significant, and much of it will
evolve into actual production software.

As the development progresses, the code is required by more and more
stakeholders (other software teams, hardware teams, production teams), and the ef-
fects of changes in hardware or related software ripple substantially farther than within
the work of the corresponding teams. Therefore, the rigidity of software development
practices has to steadily increase from what is needed in the initial, turbulent environ-
ment where changes have limited impact, to the final stages where the slightest
changes have to be carefully analyzed and accepted among several stakeholders. This
kind of on-the-fly adjustment of the practices is not adequately supported by current
agile methods.

2.3 High Level Designs and Executable Documentation Are Not Sufficient

The information transferred between the teams implementing the system is typically
very specific as regards timing, bit patterns, etc. Furthermore, embedded system de-
velopment requires a wide range of expertise, which means that distributed develop-
ment is a necessity. While individual teams may still reside on a shared location, the
mix of different technologies involved requires communication across different teams,
which means that face-to-face communication only is not enough. Also, synchronizing
the teams’ work requires a certain amount of up-front design documentation.

The inability to avoid up-front documentation is an obvious challenge to fully-
fledged use of agile methods. The problem of keeping the documentation up to date
remains, however. Therefore, the challenge for agile methods is to provide more so-
phisticated methods for recognizing the required amount of documentation at a given

Copyright LNCS. Ronkainen, J. and Abrahamsson, P. (2003) Software development under stringent
hardware constraints: Do agile methods have a chance? In XP 2003, Genova, Italy

time. Due to the involvement of stakeholders of different technologies, executable
documentation has its limits in the development of embedded software.

2.4 The development is test driven by nature

The most predominant activity in developing complex embedded systems is testing.
The requirements for embedded system reliability and device autonomy are generally
strict [8]. In addition to the normal software tests (unit, integration, acceptance), many
tests focus on the functionality of the hardware the software drives.

Some testing concepts promoted by agile approaches (the use of regression tests,
for example) are already in place in hardware-related software development. Some of
the core ideas (write tests first, run every unit test at least daily) are problematic, how-
ever. The test environment is usually different from the development environment, and
memory or performance constraints often prevent installing and running all of the test
code in the testing environment at the same time. Further still, daily testing may not be
possible due to the sharing of the hardware simulation resources with hardware teams.

Despite the problems, the agile approach to testing offers promising ideas that are
worth investigating in the realm of hardware-related software development. Specific
solutions are required, however, for mitigating the problems of scaling the test soft-
ware to different situations.

3 Requirements for Agile Methods in Embedded Systems
Development

The identification of the characteristics of embedded system development shows that
the problems faced in the turbulent software-hardware boundary are largely those the
agile methods are intended to solve. In particular, constant change in requirements
and the need to experiment already necessitate the use of an iterative and incremental
development process. Testing is also vital in embedded software development, yet
another highly encouraged practice in agile development methods. Finally, efficient
and timely communication between hardware and software developers is paramount.

Table 1, based on the discussion above, puts forward four basic problems areas,
their descriptions and the embedded domain specific requirements for the new agile
software development methods.

Table 1. Specific problems and requirements

Problem
area

Problem description Embedded domain require-
ments

Hard real-time
requirements

The role of architecture is
important, up-front design
and architecture work cannot

New agile methods should place
more emphasis on the software
architecture, techniques are

Copyright LNCS. Ronkainen, J. and Abrahamsson, P. (2003) Software development under stringent
hardware constraints: Do agile methods have a chance? In XP 2003, Genova, Italy

Problem
area

Problem description Embedded domain require-
ments

be avoided.

Extensive refactoring poten-
tially hazardous and thus not
always feasible.

needed for determining the extent
of specification and documenta-
tion needs.
Refactoring should be integrated
with a workable configuration
management system that includes
relevant hardware versions. Sy s-
tem-level impact analysis methods
are a necessity.

Experimenting While code experimentation
(or prototyping) is generally
used, the transition to well-
documented production
code is a challenge.

Techniques needed for progre s -
sively increasing code maturity.
Various code grades for different
phases of the evolution are
needed..

Documenta-
tion

Existence of multiple devel-
opment teams. Executable
documentation alone is not
sufficient. The number of
stakeholders involved in the
project grows gradually.
Distributed development is a
necessity due to presence of
multiple technologies.

Techniques needed for recogniz-
ing and managing change-prone
requirements. Ways to enable a
gradual introduction of more rigid
practices are needed. Coordin a-
tion and communication methods
are needed for inter-team work.

Test-driven
development

Extra code for testing effects
system performance and
hence, test results. Capacity
constraints restrict the
amount of test software on
the system.

Techniques for building an opti-
mal test suite are required. Test
software has to be flexible in terms
of size and control – only the
essential for performance, more
extensive for testing program
logic.

Pervasive use of version / configuration control is one key ingredient in enabling
fast-paced development work in an environment where seemingly harmless changes
may cause bugs that are very difficult to locate and fix. This also has to entail relevant
hardware development versions (simulation models etc.), as the functionality of soft-
ware always has to be verified against the hardware, and vice versa.

Currently, existing agile methods can be most effectively utilized during the early
phases of development, when even the most essential requirements may be unclear,
and the availability of any working software is crucial in helping the concurrent hard-
ware development. The key issue in adapting agile methods into usable solutions in
the embedded system domain is development time scalability. What is thus required is
a method with the ability to scale smoothly during development to cater for the in-

Copyright LNCS. Ronkainen, J. and Abrahamsson, P. (2003) Software development under stringent
hardware constraints: Do agile methods have a chance? In XP 2003, Genova, Italy

creasing need of formal communication, change management methods, and documen-
tation.

4 Conclusions

This paper has described the essential characteristics of hardware-related software
development, and analyzed them from an agile development viewpoint. It was found
that the development of this type of software has to face many of the same problems
the agile methods were created to solve. The challenge, however, is that the current
operationalization of these principles, i.e. the existing agile methods, do not suit to the
development of hardware-related software as such.

The analysis was on a very limited area of embedded software development. How-
ever, since embedded system development in general is characterized by the simulta-
neous development of software and hardware, the problems described are not unique
to the development of the most hardware-bound software. Thus, the findings are gen-
eralizable to other embedded domains as well.

Based on the analysis, we maintain that agile methods offer promising solutions for
the development of embedded software. However, in order to establish a foothold in
the development of embedded systems, agile methods have to focus on the specific
embedded domain requirements the paper set out.

References

1. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software develo p-
ment methods: Review and analysis. Technical Research Centre of Finland
(2002)

2. Boehm, B.: Get Ready For The Agile Methods, With Care. Computer, Vol.
35(1) (2002) 64-69

3. Grenning, J.: Extreme Programming and Embedded Software Development. In:
Embedded Systems Conference 2002. Chicago. (2002)

4. Beck, K.: Extreme programming explained. Addison-Wesley (1999)
5. Ronkainen, J., Savuoja, A., Taramaa, J.: Characteristics of Process Improve-

ment of Hardware-Related SW. In: 4th International Conference on Product
Focused Software Process Improvement. Rovaniemi, Finland. (2002) 247-257

6. Wolf, W. H.: Hardware-software co-design of embedded systems. Proceed-
ings of the IEEE, Vol. 82(7) (1994) 967-989

7. Stankovic, J. A.: Real-Time and Embedded Systems. ACM Computing Su r-
veys, Vol. 28(1) (1996) 205-208

8. Kuvaja, P., et al.: Specific Requirements for Assessing Embedded Product
Development. In: International Conference on Product Focused Software Pro-
cess Improvement. Oulu, Finland. Technical Research Centre of Finland
(1999) 68-85

