
Warsta, J. and Abrahamsson, P. (2003) Is open source software development essentially and agile method? In 3rd Workshop on Open Source
Software Engineering, Portland, Oregon, USA.

Is Open Source Software Development Essentially an Agile Method?

Juhani Warstaa and Pekka Abrahamssonb

aDepartment of Information Processing Science
P.O.Box 3000, FIN-90014 University of Oulu, Finland

bTechnical Research Centre of Finland, VTT Electronics
P.O.Box 1100, FIN-90571 Oulu, Finland

Juhani.Warsta@oulu.fi, Pekka.Abrahamsson@vtt.fi

Abstract
It has been argued that Open Source Software (OSS)

development differs from the agile software development
mode in philosophical, economical, and team structural
aspects. This paper investigates the OSS development
characteristics from four perspectives: process, roles and
responsibilities, practices, and scope of use. The study
shows that while from a legal perspective the OSS
development paradigm could be seen more as a licensing
structure exploiting the terms of the General Public
License or similar, the OSS does in many ways follow the
same lines of thought and practices as the main stream of
existing agile methods. The principal differences and
similarities are highlighted and discussed. It is suggested
that the OSS community could benefit from the practical
solutions put forward by the agile proponents and vice
versa.
1. Introduction

Successful projects during the past years have
demonstrated the fact that the Open Source Software
(OSS) development paradigm is an important and valuable
complement to the manifold existing software development
methods [1]. During the same period also the agile
movement has started to gain ground in several different
manifestations. Our purpose in this paper is to discuss
whether these methods have something in common and
could they benefit from each other?

Agile – denoting “the quality of being agile; readiness
for motion; nimbleness, activity, dexterity in motion”
(http://dictionary.oed.com) – methods represent new
approaches in the spectrum of software development
methods. The aim of these practitioner-oriented software
development methods is to make a software development
unit more responsive to changes. These changes are
imposed by rapidly evolving technology, changing
business and product needs [2]. This is especially the
case with the rapidly growing and volatile Internet
software industry as well as with the nascent mobile
application environment.

In this paper we will analyze the OSS development
through an agile development perspective and we will
show that OSS and agile development methods have many

similarities. Much research effort is put into explicating the
contradiction of the success of the OSS projects. How
does it function, as there is no formal OSS method, but still
the organic group of developers is usually able to produce
well functioning software?

The rest of the paper is composed as follows. The next
section presents a short  overview of the OSS development
paradigm. In the third section we analyze the OSS
approach from the perspectives of process, roles and
responsibilities, practices, and scope of use. In the fourth
section we discuss the characteristics of OSS and agile
software development. The final section recapitulates the
key findings.

2. Background: The Open Source Software
paradigm

The significance of the Open Source Software
development paradigm has strongly grown from the days
when Richard Stallman started his work on GNU UNIX
back in 1980’s [3]. The establishment of the Free Software
Foundation in 1985 was a landmark for the OSS movement
as the basic ideas of controlled but free usage of software
were laid down. Later, the real impetus was given by the
technological improvements in development that made it
possible to combine the invention of the bulletin board
system and the old custom of software developers to
share code freely among colleagues. This was intensified
and made possible on a global scale by the expansion of
the Internet in the ‘90s. This development furthered the
novel software development paradigm of OSS, offering an
innovative way to produce applications. This further
aroused growing interest along with ample research efforts
and discussions concerning the possibilities and meaning
of the OSS approach for the whole software industry. This
interest has notably increased after several success
stories; among these are the widespread Apache server,
the Perl programming language, the SendMail mail handler,
and especially the ubiquitous Linux operating system [4].
Microsoft has even pronounced the latter as their
toughest competitor in the server operating systems
market.

The OSS approach suggests the source code to be
freely available for modifications and redistribution



Warsta, J. and Abrahamsson, P. (2003) Is open source software development essentially and agile method? In 3rd Workshop on Open Source
Software Engineering, Portland, Oregon, USA.

without any charges. The OSS paradigm can also be
discussed from a philosophical perspective [5, 6]. Feller
and Fitzgerald [7] present the following motivations and
drivers for OSS development:

1. Technological; the need for robust code, faster
development cycles, higher standards of quality,
reliability and stability, and more open standards
and platforms

2. Economical; the corporate need for shared cost
and shared risk

3. Socio-political; scratching a developer’s “personal
itch”, peer reputation, desire for “meaningful”
work, and community oriented idealism.

Depending on the point of view - do you stand for the
business community or are you an OSS devotee - these
motivations can be insignificant.

Most known OSS development projects are focused on
development tools or other platforms that are used by
professionals who have often participated in the
development effort themselves, thus having the role of the
customer and that of the developer at the same time. OSS
is not a compilation of well defined and published
software development practices constituting an eloquent,
written method. Instead, it is better described in terms of
different licenses for software distribution and as a
collaborative way of widely dispersed individuals to
produce software with small and frequent increments. The
Open Source Initiative [8] keeps track of and grants
licenses for software that complies with the OSS
definitions.

3. Some perspectives of the OSS paradigm
The purpose of this section is to analyze the OSS

paradigm from several perspectives: process, roles and
responsibilities, practices, adoption and experiences, and
scope of use. A definition of the perspectives chosen can
be found in [9]. While the focus is on the OSS, some clear
differences or similarities with regard to agile methods are
also disclosed.
Process

Cockburn [10] notes that OSS development differs from
the agile development mode in philosophical, economical,
and team structural aspects. However, OSS does in many
ways follow the same lines of thought and practices as
many agile methods. For example, the OSS development
process starts with early and frequent releases, and it
lacks many of the traditional mechanisms used for
coordinating software development with explicit plans,
system level designs, schedules and defined processes.
Typically, the OSS project consists of the following visible
phases [11]: problem discovery, finding volunteers,
solution identification, code development and testing,
code change review, code commit and documentation, and
release management.

Even though it is possible to depict the idea of OSS
development with the above iteration stages, still the focal
interest lies in how this process is managed. Mockus et al.
[12] suggest that the following factors depict the
challenges in the OSS development process that must be
tackled in a proper manner:

1. The systems are built by potentially large numbers
of volunteers.

2. Work is not assigned; people themselves choose
the task they are interested in.

3. No explicit system level design exists.
4. There is no project plan, schedule or list of

deliverables.
5. The system is augmented in small increments.
6. Programs are tested frequently.
Others disagree and propose that the OSS development

process is organized as a massive parallel development
and debugging effort [e.g., 7]. However, the method for
organizing this  is not described.
Roles and responsibilities

As shown above, for some, the OSS development
process seems to be quite free and wild. However, we
maintain that this is deceptive, as the development
process has some a defined structure, or else it would
never have been able to achieve such remarkable results
as it has in the past years. Also, mature and established
companies have started to show interest in OSS. Among
these are notably IBM, Apple, Oracle, Corel, Netscape,
Intel and Ericsson [7]. Especially in larger OSS projects,
the companies have taken the role of the coordinator and
that of the mediator, thus acting as the project manager.

While no face-to-face meetings are typically used in the
OSS context, the importance of the Internet as the means
to communicate is a fundamental tool. The OSS
development process needs a functional version
management software that tracks changes in and allows
the submission and prompt testing of new source code.
The role of these tools should not be underestimated, as
the developed software must be orchestrated and run
continuously, and the developers themselves have
varying skill levels and backgrounds. A typical OSS
development effort structure, according to Gallivan, [13] is
composed of several levels of volunteers:

1. Project leaders who have the overall responsibility
for the project and who usually have written the
initial code

2. Volunteer developers who create and submit code
for the project. These can be further specified as:
Ø Senior members or core developers with

broader overall authority
Ø Peripheral developers producing and

submitting code changes
Ø Occasional contributors
Ø Maintainers and credited developers



Warsta, J. and Abrahamsson, P. (2003) Is open source software development essentially and agile method? In 3rd Workshop on Open Source
Software Engineering, Portland, Oregon, USA.

3. Other individuals who in the course of using the
software perform testing, identify bugs and deliver
software problem reports

4. Posters participate frequently in newsgroups and
discussions, but do no coding.

Sharma et al. [11] suggest that OSS development
projects are usually divided by the main architects or
designers into smaller and more easily manageable tasks,
which are further handled by individuals or groups.
Volunteer developers are divided into individuals or small
groups. They freely select the tasks they wish to
accomplish. Thus a rational modular division of the overall
project is essential in enabling a successful outcome of
the development process. Furthermore, these sub-tasks
must be interesting so as to attract developers.

The agile methods advocate the same ideas of small
and frequent releases as well as the coordinated
development process. However, in a business
environment the professionals typically do not have the
same possibility of selecting their assignments.
Practices

To start or to acquire an ownership of an OSS project
can be done in several ways: to found a new one, to have
it handed over by the former owner, or to voluntarily take
over an ongoing dying project [14]. Often the actual to-be
users themselves define the product (i.e., the project) and
do the coding. The process is continuous, as software
development is evolving [seemingly] endlessly. Even
though hundreds of volunteers may be participating in the
OSS development projects, typically there is only a small
group of developers performing the main part of the work
[12, 15, 16].

Sharma et al. [11] describe some of the central
organizational aspects in the OSS approach, e.g. the
division of labor, co-ordination mechanism, distribution of
decision-making, organizational boundaries, and informal
structure of the project. Mockus et al. [12], on the other
hand, exemplify the OSS development being a process
where the systems are built by potentially large numbers
of volunteers, work is not assigned as people undertake
the work they choose to undertake, there is no explicit
system-level design, or even detailed design and there is
no project plan, schedule, or list of deliverables.

These above elements are possible pitfalls of OSS
paradigm if not properly handled. For example, in order to
work successfully, geographically dispersed individuals
must have well functioning and open communication
channels between each other, especially as the developers
do not usually meet face-to-face. Having no system-level
designs or project plans adds into the process even more
uncertainties that must be mastered.

Lerner and Tirole [17] report in brief some experiences
concerning the development paths of Linux, Perl, and
Sendmail software, describing the development of these

applications from an effort of a single programmer to a
globally scattered team of tens of thousands of
individuals . This means that the OSS development method
is highly dependent on the Internet enabling global
networked collaboration.
Scope of use

At present, the most widely published results mostly
concentrate on development efforts concerning software
development tools, server applications and Internet based
products [17]. The OSS development paradigm itself does
not bring forth any special application domains nor does it
set any limits for the size of the software. However, the
suggested development projects should comply with the
elements that the OSS approach is founded on as
described above. While new OSS development efforts are
continuously producing raw material that can later be
harnessed to commercial exploitation, it seems that the
future trends also rely on taking an advantage of global
developer collaboration [5]. From a legal perspective, the
OSS development paradigm should be seen more as a
licensing structure exploiting the terms of the General
Public License or similar. Typical examples of OSS
applications are, according to Feller [7], complex back-
office infrastructural support systems with a high number
of users.

The OSS development process itself can be
implemented using different software development
methods. However, these methods should comply with the
characteristics of the OSS paradigm in order to produce a
successful project.

4. Comparison of OSS and agile development
Table 1 shows the comparison of the agile, OSS and

plan-driven (process-oriented) methods using Boehm’s
[18] analytical lenses.  Examining the different “home-
ground areas” in Table 1 shows how the OSS paradigm
places itself between the agile and plan-driven methods,
though having more in common with the agile methods. It
was found that the most notable differences are in the
proximity and size of the development teams, the
customers’ representation during the development project,
and with the primary objective of the development work.
The analysis shows that the OSS approach is close to a
typical agile method, with the distinction that the OSS
operates in a geographically distributed mode – a feature
that is missing from the existing agile methods. In OSS
development, the customer is often also a co-developer
[1], which is not the case in agile software development.
This thus places a challenge to the use of OSS principles
in developing commercial software.

An agile software development method has been
defined with the following characteristics [9]:
Ø incremental (small software releases, with rapid

cycles),



Warsta, J. and Abrahamsson, P. (2003) Is open source software development essentially and agile method? In 3rd Workshop on Open Source
Software Engineering, Portland, Oregon, USA.

Ø cooperative (customer and developers working
constantly together with close communication),

Ø straightforward  (the method itself is easy to learn
and to modify, well documented), and

Ø adaptive (able to make last moment changes).
In the following, it is shown how the OSS software

development paradigm complies with these characteristics.
In the previous section the analysis already revealed some
elements that reflect the agility of the OSS approach.
Incremental

As stated earlier, the OSS development process starts
with early and frequent releases. Furthermore, systems
developed under the OSS paradigm are typically
augmented with small increments and the programs are
tested frequently [12]. Linus Torvalds has expressed that
his philosophy during the development process of the
Linux operating system has been to “release early, release

[3]. Koch [1] also describes the OSS as an extremely
decentralized development method with low control of
further development, exploiting fast release cycles. Hence,
it appears that the OSS complies well with the definition of
the agile method.
Cooperative

The network effect is crucial for the success of OSS
development. New prototypes are introduced into the OSS
community network. After the announcement, the crucial
question and moment is, does the introduced prototype
gather enough interest. The project will start to attract
more and more developers, if it is challenging enough.
Bergquist and Ljungberg [14, 319] have studied the
development of relationships in OSS communities. They

conclude that “one could understand the [OSS] culture as
a kind of amalgamation of collectivism and individualism:
giving to the community is what makes the individual a
hero in the eyes of others. Heroes are important influences
but also powerful leaders.”

In many cases the roles of customers and co-
developers intertwine, thus giving an interesting aspect to
the development process itself. The OSS approach is
pushing the cooperative nature to its limits as the network
of developers can be both widespread and numerous.
Traditional agile methods advocate geographically close
networks with small developer teams.
Straightforward

The OSS is not well documented. There does not exist
any identical convention among the developers using the
OSS paradigm. Instead, there are many ways to conduct
an OSS project. The OSS developers use industry
perceived best practices. Therefore, it is hard to argue how
easy the method is to learn, as there are no guidebooks to
follow. However, this feature also makes it easy to modify
since there are no strict rules but only good practices.
Only the OSS licensing mechanism can be considered well
documented, tested, and functioning.

The programming effort includes loosely-centralized,
cooperative and free of charge contributions from
individual developers. The OSS development process
does not include any predefined formal documentation
norms or customs. The customs and taboos are learned
and perceived by experience. The agile development
process also emphasizes the parallel development and
debugging effort in its software development process [7].

Table 1. Home ground for agile and plan-driven methods [18], augmented with open source software column.

Home-ground
area

Agile methods Open source software Plan-driven methods

Developers Agile, knowledgeable,
collocated, and collaborative

Geographically distributed,
collaborative, knowledgeable and agile
teams

Plan-oriented; adequate skills;
access to external knowledge

Customers Dedicated, knowledgeable,
collocated, collaborative,
representative, and empowered

Dedicated , knowledgeable,
collaborative, and
empowered

Access to knowledgeable,
collaborative, representative, and
empowered customers

Requirements Largely emergent;
rapid change

Largely emergent; rapid change,
commonly owned, continually evolving
– “never” finalized

Knowable early;
largely stable

Architecture Designed for current
requirements

Open, designed for current requirements Designed for current and
foreseeable requirements

Refactoring Inexpensive Inexpensive Expensive
Size Smaller teams and

products
Larger dispersed teams and
smaller products

Larger teams and
products

Primary objective Rapid value Challenging problem High assurance

Seen from this perspective the OSS paradigm does not
comply when compared with most of the existing agile

methods. Some of the agile methods, however, are nothing
but loosely coupled collections of best practices [9].



Warsta, J. and Abrahamsson, P. (2003) Is open source software development essentially and agile method? In 3rd Workshop on Open Source
Software Engineering, Portland, Oregon, USA.

Adaptive
Peculiar to an OSS project is that the requirements are

constantly being elaborated, and that the product is never
in a finalized state, until all development work has ceased
on the product [1, 7]. Depending on management,
however, this can be seen both as a problem and as a
strength.

“Informalismus”, a term introduced by Schacci [19],
describes the adaptivity in the OSS approach. In specific,
resources can be browsed, crosslinked, and updated on
demand. One of the strengths of agile methods is just the
ability to allow last moment changes in a controlled way.
On the other hand, agile projects have clear starts and
endings.
Summing up

From the above discussion it can be seen that in
essence, the OSS paradigm complies with the agile
methods. However, some focal differences remain that
must be resolved before the OSS is viable also in the
business community. The central question regarding Open
Source Software is how to stabilize and manage the entire
development process and how to commercialize the code
to an application level that satisfies the business
community. Based on the analysis presented above, it is
suggested that the OSS community could benefit from the
practical solutions put forward by the agile proponents
and vice versa.

5. Conclusions
Even though it has been argued that the OSS

development differs from the agile development mode in
philosophical, economical, and team structural aspects we
have shown that the OSS development method is rather
close to the definition of an agile software development
method. Geographically and culturally dispersed
organizations could benefit from analyzing the pros and
cons of the different OSS paradigms, and adapt the most
prominent solutions into use in their specific context of
software development.

Open Source Software is still fairly new in a business
environment and a number of interesting research
questions remain to be analyzed and answered. Among
these are e.g. the effective and clear functionality of the
legal licensing network and incorporating the visible
benefits of the OSS paradigm into the context of a normal
software developing organization [20]. Analysis showed
that the OSS approach can be seen as one variant of the
multifaceted agile methods. Software companies are
showing more and more interest in finding out the
possibilities of harnessing the OSS method to support
their daily work as the method itself embodies several
interesting aspects that could benefit the software
industry.

6. References
[1] S. Koch, "Open Source Software-Entwicklung:

Analyse und Aufwandsschätzung an einem
Beispiel," in Wirtschaftsinformatik . Wien:
Universität Wien, 2002, pp. 187.

[2] J. Highsmith, Agile software development
ecosystems. Boston, MA.: Pearson Education,
2002.

[3] A. Gawer and M. Cusumano, Platform
Leadership. How Intel, Microsoft, and Cisco
Drive Industry Innovation. Boston: Harvard
Business School Press, 2002.

[4] D. Voth, "Open Source in the US Government,"
IEEE Software, vol. January/February, pp. 73,
2003.

[5] T. O'Reilly, "Lessons from Open-source Software
Development," CACM , vol. 42, pp. 33 - 37, 1999.

[6] R. Hightower and N. Lesiecki, Java Tools for
Extreme Programming. New York: Wiley
Computer Publishing, 2002.

[7] J. Feller and B. Fitzgerald, "A Framework
Analysis of the Open Source Software
Development Paradigm," presented at 21st
Annual International Conference on Information
Systems, Brisbane, Australia, 2000.

[8] www.opensource.org, 2003.
[9] P. Abrahamsson, O. Salo, J. Ronkainen, and J.

Warsta, "Agile software development methods.
Review and analysis," VTT Technical Research
Centre of Finland, Oulu VTT Publications 478,
2002.

[10] A. Cockburn, Agile Software Development.
Boston: Pearson Education, Inc., 2002.

[11] S. Sharma, V. Sugumaran, and B. Rajagopalan, "A
framework for creating hybrid-open source
software communities," Information Systems
Journal, vol. 12, pp. 7 - 25, 2002.

[12] A. Mockus, R. Fielding, and J. Herbsleb, "A Case
Study of Open Source Software Development:
The Apache Server," presented at 22nd
International Conference on Software
Engineering, ICSE, Limerick, Ireland, 2000.

[13] M. Gallivan, "Striking a balance between trust
and control in a virtual organization: a content
analysis of open source software case studies,"
Information Systems Journal, vol. 11, pp. 273 -
276, 2001.

[14] M. Bergquist and J. Ljungberg, "The power of
gifts: organizing social relationships in open
source communities," Information Systems
Journal, vol. 11, pp. 305 - 320, 2001.



Warsta, J. and Abrahamsson, P. (2003) Is open source software development essentially and agile method? In 3rd Workshop on Open Source
Software Engineering, Portland, Oregon, USA.

[15] B. Dempsey, D. Weiss, P. Jones, and J.
Greenberg, "Who Is and Open Source Software
Developer," CACM , vol. 45, pp. 67 - 72, 2002.

[16] R. Ghosh and V. Prakash, "The Orbiten Free
Software Survey," vol. 2002: Orbiten.org, 2000.

[17] J. Lerner and J. Tirole, "The Simple Economics of
Open Source," vol. 2002, 2001.

[18] B. Boehm, "Get Ready for Agile Methods, with
Care," Computer, vol. January, pp. 64 - 69, 2002.

[19] W. Scacchi, "Is Open Source Software
Development Faster, Better, and Cheaper than
Software Engineering?," presented at 2nd ICSE
Workshop on Open Source Software
Engineering, Orlando, FL., 2002a.

[20] J. Dinkelacker, P. Garg, R. Miller, and D. Nelson,
"Progressive Open Source," presented at
ICSE'02, Orlando, FL., 2002.


