
Extreme Programming:

First Results from a Controlled Case Study

Pekka Abrahamsson

VTT Technical Research Centre of Finland

P.O. Box 1100, FIN-90571 Oulu, Finland

pekka.abrahamsson@vtt.fi

Abstract

Extreme programming (XP) is the most well known

agile software development method. Many experience

reports have been published in recent years. Successful

XP adoptions have however been criticized for the lack of

concrete data. While some exist, the studies are often

difficult to compare due to different settings and the

varying level of XP adoption. This paper reports the first

results (concrete data from 2/5 releases) from a

controlled extreme programming case study. Four

software engineers were acquired to implement a system

in a tight delivery schedule of eight weeks. Development

environment was close to the agile home ground. A

comparison of the collected data from the first two

releases is provided. Analysis shows that while the first

release is a learning effort for all stakeholders, the second

release shows clear improvement in all regards, e.g.,

estimation accuracy is improved by 26%, productivity

was increased by 12 locs/hour and yet the post-release

defect rate remained low, i.e., 2.1 defects/KLoc.

1. Introduction

Agile methods and principles have gained a significant

amount of attention in the field of software engineering in

just few years. The roots of agile software development

can be traced back as early as 1960’s and even beyond

[1]. The starting point for the movement, however, was

actually in mid 1990’s [2]. Since then, several methods

[for an overview, see e.g., 3] have been developed that

claim conformance to agile principles explicated in agile

manifesto (www.agilemanifesto.org.).

Extreme programming (XP), a method developed by

Beck [4], is the most well known of the agile methods.

While a number of XP books1 [5-11] and experience

reports [e.g., 12, 13-17] have been published, less is

1 The XP series by Addison-Wesley has published already 10+ books on

different facets of the Extreme Programming with more to come. The

citations here serve as examples.

known about the empirical and scientific validity of the

method [18-20]. Moreover, XP has been critiqued against

for embracing the hacker’s culture and thus neglecting the

product and process quality viewpoints [e.g., 21].

This paper reports the first results from a controlled

case study where XP process and resulting product quality

have been under scrutiny. A team of four developers has

been acquired to implement a system (code-named for

eXpert) for managing the research data obtained over

years at a large Finnish research institute. The consortium

had already acquired the development of a similar system

from an IT provider. That system is promised to be in use

late this year (pilot testing is currently ongoing). EXpert,

however, aims at providing a subset of this functionality

within just eight weeks. The development schedule and

resources were fixed. Flexibility was reserved to the

delivered functionality. The requirements for the system

were not, however, well known before the project was

initiated since the participating stakeholders were not

familiar with the other system. The author of this paper

represented customer organization’s management to the

development team.

The results reported in the paper contain the data

obtained from the first two functional system releases

delivered after two and four weeks into the eight week

project, respectively. The results have been very

promising from the customer’s point of view. Due to lack

of concrete data on XP practices and process, this paper

concentrates on analyzing the differences between the

concrete data obtained over the two releases. Results

shows that while the first release is a learning effort for all

stakeholders, the second release shows clear improvement

in many regards. The estimation accuracy is improved by

26% and productivity was increased by 12 locs/hour. Yet,

the post-release defect rate remained low, i.e., 2.1

defects/KLoc.

The paper is organized as follows. The following

section introduces in brief the purpose of the XP method.

This is followed by a description of how the research was

performed, the results and the discussion. The paper is

concluded with final remarks.

Proceedings of the 29th EUROMICRO Conference “New Waves in System Architecture” (EUROMICRO’03)
1089-6503/03 $17.00 © 2003 IEEE

2. Extreme Programming

Extreme Programming is one of several agile software

development methods that have emerged in the past few

years. Of all the existing agile methods, XP however is the

most well known. XP was first introduced in [22] and it

focuses on delivering immediate business value to the

customer. The XP process can be characterized by short

development cycles, incremental planning, evolutionary

design, and its ability to response to changing business

needs. The method itself is built around what appears to

be easy-to-understand set of practices, which have been

documented in the literature (see references for details).

These practices are planning game, small releases,

metaphor, simple design, testing (test-driven

development), refactoring, pair programming, collective

ownership, continuous integration, 40-hour work week

(also known as sustainable pace) and on-site customer,

just rules and open workspace. In addition, spikes [8] is

also often associated to the XP method’s practices.

The XP method is designed to meet the needs of a

skilled small (i.e., less than 10 developers) team that is

working in a co-located office together with the customer

developing software that is not safety-critical on an object-

oriented technology [4]. This type of situation is what can

be called an ideal surrounding for the XP method or what

Boehm [23] calls an agile home ground. This case study

falls within this description.

3. Research design

This section describes how the research design for the

study is laid out.

3.1. Research method

The title of the paper indicates the use of a case study

research method [e.g., 24]. However, the boundaries

between different research methodologies and data

collection techniques are often overlapping to certain

extent [25], which is evidenced in this study. Cunningham

[26], for example, relates action research as one form of

case study research. In action research the focus is more

on what practitioners do rather than what they say they do

[27]. This certainly is the position taken in this study.

Moreover, Järvinen [28] follows Oquist [29] and argues

that action produces knowledge to guide practice, which is

the principal aim of this study. In action research, the

modification of reality requires the possibility to intervene

[30]. The author was in the role of management in the

study and mediated the release post-mortem analysis [31]

sessions, which were performed after each software

release. In the post-mortem analysis session the project

team proposed changes to the implementation process.

Thus, the origins for modification of reality came from the

project team, not from the researchers.

The term “controlled” in the paper’s title is used

purposefully. This comes from an observation that the

researchers were in a position to design the

implementation environment (see next subsection of

research setting) beforehand. Using a taxonomy proposed

by Baskerville and Wood-Harper [32], the main type of

research – case study or action research – methodology

employed was that of participatory “action research”, in

which the investigator participates (or intervenes) in

organizational daily work and treats subjects as equal co-

workers. The level of author’s involvement differed from

mere observation (i.e., through obtained data) to actual

implementation (i.e., post-mortem analysis session, daily

meetings with the project team). The focus is on

organizational development and advancing scientific

knowledge on the subject matter for academia. In this

case, advancing scientific knowledge implies the effort to

explore and to understand the process of extreme

programming in the context of developing information

systems.

3.2. Research setting

A team of four developers was acquired to implement a

system (code-named for eXpert) for managing the

research data obtained over years at a Finnish research

institute. A metaphor that better describes the intended

purpose of the system is a large “virtual file cabinet”,

which holds a large number of organized rich (i.e.,

annotated) links to physical or web-based resources. The

system is an web-based client-server solution.

Item Description

Language Java (JRE 1.4.1), JSP (2.0)

Database MySQL (Core 4.0.9 NT, Java

connector 2.0.14)

Development Environment Eclipse (2.1)

SCM CVS (1.11.2); integrated to

Eclipse.

Documents MS Office XP

Web Server Apache Tomcat (4.1)

Table 1. Technical implementation environment

The four developers were 5-6
th

 year students with 1-4

years of industrial experience in software development.

Team members were well-versed in the java programming

language and object-oriented analysis and design

approaches. Two weeks prior to project launch the team

performed a self-study by studying two basic books on XP

[i.e., 4, 8]. A two day hands-on training on XP practices,

Proceedings of the 29th EUROMICRO Conference “New Waves in System Architecture” (EUROMICRO’03)
1089-6503/03 $17.00 © 2003 IEEE

the development environment and software configuration

management tools was organized to ensure that the team

has a basic understanding on XP issues and the technical

environment. Table 1 shows the details of the technical

environment used for the development of eXpert system.

Thus, this study focuses on a development team that is

novice to extreme programming practices.

The team worked in a co-located development

environment. The customer (i.e., a representative from the

research institute) shared the same office space with the

development team. The office space and workstations

were organized according to the suggestions made in the

XP literature to support efficient teamwork. Unused

bookshelves, as an example, were removed in order to

have a maximum amount of empty wall space for user

stories and task breakdowns, architecture description, etc.

4. Results

As indicated earlier, due to a lack of empirical data from

XP process, this paper concentrate on reporting concrete

metrics data obtained from the first two releases. Thus,

while qualitative data has been collected on XP practices

and the process, they will be reported elsewhere. The

concrete metrics involve effort usage for each task and XP

practice with a precision of 1 minute, development work

size using automated counters for Java and JSP,

development time defects (including type, severity), post-

release defects (found by 17 allocated system testers) and

the number of enhancement suggestions made by testers.

Work commit size was drawn from the CVS tool. The

quality of the data obtained was systematically monitored

by the project manager, dedicated metrics responsible and

the on-site customer.

Collected data Release 1 Release 2 Total

Total work effort (h) 195 190 385

Task allocated actual hours 136 (70%) 95 (50%) 231 (60%)

LOCs implemented in a release 1821 2386 4207

Team productivity (loc/hour) 13.39 25.12 18.21

User stories implemented 5 8 13

User stories postponed for next release 0 1 1

User story effort (actual, median, h) 10.1 8.3 9.2

User story effort (actual, max, h) 63.1 26.9 63.1

Tasks defined 10 30 40

Task effort (actual, median, h) 11.7 2.9 4.1

Task effort (actual, max, h) 32.3 8.8 32.3

post-release defects 4 5 9

Post-release defects/KLoc 2.19 2.10 2.14

post-release enhancement suggestions 11 12 23

Pair programming (%) 92 73 82

Customer involvement (%) 5 6 5.3

Table 2. Concrete data from two-week releases

Table 2 shows the data obtained from the first two

releases. The total column shows the cumulative data from

the two releases.

Total work effort dedicated to project work remained

constant in the first two releases. However, the direct

hours dedicated to tasks was reduced from 70% to 50%.

None-task allocated work was the effort spent to planning-

game, data collection, project meetings, brainstorming,

coaching and not anticipated extra pre-release testing. The

team productivity did however improve from 13.39 to

25.12 loc/hour. The first release contained tasks not

related to user functionality such as finalizing the

technical set up of the development environment. This

explains partly the increase in team productivity.

The team implemented five user stories in the first

release and eight in the second. The median user story size

(hours) for the first release was 10.1 hours and 8.3 for the

second. The maximum size of a user story in the first

release was 63.1 hours. In the second release, the

maximum size was reduced to 26.9 hours. While only 10

tasks were defined for the first release, the second release

contained already 30 tasks. Similarly, the median size of a

task was reduced from 11.7 to 2.9 hours, and the

maximum size of a task was reduced from 32.3 to 8.8

hours.

17 testers were allocated for a brief (i.e., max 45min)

and intensive (i.e., testing was to be performed within four

hours from system release) user functionality test. Testers

discovered four defects after the first release and five

defects after the second release. The defect density for the

first release was thus 2.19 defects/KLoc and 2.10 for the

second. The defect density was found to be satisfactory

giving an indication of the overall product quality. Testers

also proposed 11 enhancements (i.e., new or improved

functionality) after the first release and 12 following the

second release.

Proceedings of the 29th EUROMICRO Conference “New Waves in System Architecture” (EUROMICRO’03)
1089-6503/03 $17.00 © 2003 IEEE

Pair programming was extensively practiced in the

development of the first release (92%) but was reduced to

70% in the second release. While the customer shared the

same office with the development team and thus was

present close to 100% of the total time, the actual

customer involvement was only 5% in the first release and

6% in the second release.

Figure 1 displays the overall effort distribution for the

first two development cycles. Data shows that in this

project roughly 9% is required for planning the release

contents. Project management activities, which include

data analysis, monitoring the progress of the project and

the development of project plan require 11% of the total

effort. Coding in terms of unit test development,

production code, development spikes and refactoring take

54% of the total effort. Daily project meetings took 7%

and the overhead caused by data collection was only 2%.

All the design documentation including architectural

description is displayed in the walls of the development

room. The effort spent on an “design” phase is only 2%.

This is actually the time used for architecture design. The

simple design practice involved in the pair programming

coding was not separately tracked. The principal amount

of effort was spent directly on tasks, 68% in the first

release and 54% on the second release.

User stories and tasks were documented and displayed

in the walls as well. The system documentation for the

maintenance purposes will be produced in the last two

releases when the system architecture and the user

functionality has stabilized enough and is not subject to

constant changes.

Figure 1. Effort distribution (%)

XP literature has argued that the first release for a

novice XP team is a significant learning effort. This

argument is supported by the data obtained from this

study. Figure 2 shows how the development team learned

to decompose the customer defined user stories in smaller

segments, which facilitated the project monitoring as well

as the story development. Actual effort spent to

implementing a task was reduced also significantly. The

difference is also clear in the variance indicating better

story and task definition.

User story effort estimates are derived from the task

estimates. Literature has shown that an ability to estimate

accurately is a skill that is learned over time [33]. As

suspected, the team had major difficulties in decomposing

the contents of the first release into tasks that can be

accurately estimated as shown in Figure 3. Estimation

accuracy does not appear to improve for the second

release but when the actual effort expenditure (in terms of

hours, lower graph) caused by a faulty estimate is

inspected, the median value (based on 30 tasks) is close to

zero hours (i.e., for the second release). This indicates that

while the estimates were not accurate (note, tasks were

mostly overestimated), the problem was mitigated by

having defined considerably smaller tasks. The project

manager was able to take necessary actions on daily rather

than on weekly basis.

Proceedings of the 29th EUROMICRO Conference “New Waves in System Architecture” (EUROMICRO’03)
1089-6503/03 $17.00 © 2003 IEEE

ACTUAL TASK BASED EFFORT USAGE

ACTUAL STORY BASED EFFORT USAGE

Figure 2. Actual effort spent for user stories and tasks

ESTIMATION ACCURACY: USER STORIES, ERROR IN %

ESTIMATION ACCURACY: USER STORIES, ERROR IN EFFORT EXPENDITURE (HOURS)

Figure 3. Estimation accuracy

5. Discussion

The results presented in the previous section

emphasized the differences between the two system

releases in the eXpert project from several viewpoints.

An important finding that can be identified already at

this stage of the project is the little need for actual

customer involvement in the project. This finding is not in

line with the XP literature. Many authors [e.g., 34, 35, 36]

maintain that often customer’s work effort is very high. In

this case, while customer was present close to 100% of the

total time, only 5.3% of his work effort was required to

assist the development team in the development. However,

the mere presence of the customer was highly appreciated

by the development team. They viewed that the customer

Proceedings of the 29th EUROMICRO Conference “New Waves in System Architecture” (EUROMICRO’03)
1089-6503/03 $17.00 © 2003 IEEE

organization values the system high and this was seen to

work as a motivating factor for the team. Thus, regardless

of the required effort usage, on-site customer can be seen

as an important stakeholder in the project. It should be

noted that in this case study, customer did not develop

acceptance tests. He was performing this task manually at

the end of each release cycle.

As stated earlier, the post-release defect density was at

an acceptable level, i.e. 2.19 and 2.10 defects/Kloc,

respectively. This result can be seen positive from three

perspectives. First, an early insight was gained to the

overall product quality. If more bugs would have been

discovered, necessary actions could have been taken

rapidly to mitigate the problem with defects. Second, the

testing team forms a part of the user group who will make

use of the system when it is finally released. Thus, apart

from testing the user functionality, they had an

opportunity to influence the content of the future releases.

Research has shown that user involvement in the systems

development process has a positive impact on the

subsequent system adoption and use [37]. In the two

releases altogether 23 new or enhanced user functionality

suggestions were received. Also, the eXpert testers were

able to observe how the development proceeds from the

very first release to the final fully functional system. The

third advantage related to low defect density and the

testing process is the rapid feedback acquired for the

development team. The customer representative collected

and categorized the suggestions (and bugs) reported over

the weekend and presented the results on the following

Monday to the development team – another sign

demonstrating customer commitment to the project.

Pair programming is one of the most researched XP

practices [see e.g., 38, 39-44]. In the first release, 92% of

the programming effort was done in pairs. This was

reduced to 73% in the next release. Williams [39] has

argued that only after having effectively experimented

with the pair programming practice, an estimation can be

made where it delivers the most value and where it proves

ineffective. Clearly, two weeks is not sufficient for a

through evaluation of a single practice but due to the tight

delivery schedule, the team was able to make decisions

regarding each practice in the post-release analysis.

However, the fact that the pair programming time

remained above 70% in the second release demonstrates

that the team felt comfortable with it. More importantly,

the development time productivity achieved in the second

release (i.e., 25.12 Loc/hour) is close to the same as e.g.

PSP research [45] has consistently shown. The fact that

the pair programming was less practiced in the second

release and at the same time the productivity was

increased is not necessarily related since the first release

contained tasks not related to delivering user functionality,

e.g., database configurations, software installations.

In software engineering in general, accurate effort

estimates are difficult to attain [33]. Initial estimates can

often be better regarded as “guesstimates” [46]. Regarding

the XP process of producing the estimates, McBreen [21,

p. 60] was doubtful about the value of XP planning game:

“The accuracy of the estimates produced during the

planning game needs to be investigated, especially for

organizations that are just adopting XP. [...] I wonder how

long it takes a new XP team to get good at the Planning

Game.” This paper gives some concrete results in this

regard. The estimation accuracy was improved in terms of

estimation error (median error reduced from –48% to –

22%) and mis-allocated development time due to

inaccurate estimations was also reduced from 5.8h to 0.8h.

To support this finding, Langr [47] argued that “Initial

estimates are going to be inaccurate in any process. In XP,

the team has lots of opportunities to estimate and to learn

how to do it well – the team hones their estimating skills

every two weeks.” This study thus supports Langr’s

argument. Our findings indicate that a novice XP team is

very careful about making too optimistic estimates.

However, it took them only two weeks to realize this. The

team in this study continued to overestimate in the second

release but the accuracy was improved dramatically.

Learning to execute the planning game routines was

facilitated by a clear agreement on the procedures, roles

and responsibilities.

Only one story implementation has been postponed so

far. This did not come as a surprise for the customer since

he was present, and he gave the approval after having

consulted with the management about the change in the

release contents. It was agreed before the project started

that the release date should not be postponed but the

content can be negotiated if the team so desires. This is in

line with what Humphrey [48] discusses about making a

commitment and keeping it. The team commits to the

release schedule and the contents are negotiated. If any

changes are to be made, an early warning must be given.

One of the goals for the project was that no overtime work

is needed. So far, this has been achieved.

Finally, and most importantly, the development team

has convinced the customer organization that they are able

to deliver the system within the time limits defined. The

only concern is that the customer organization becomes

eager to want more functionality that the development

schedule allows.

6. Conclusions

Agile movement has gained significant attention in the

software engineering community in the last few years.

While concrete data about the various aspects of the XP

process are emerging, less data is available regarding the

resulting product. This may be due to the fact that

Proceedings of the 29th EUROMICRO Conference “New Waves in System Architecture” (EUROMICRO’03)
1089-6503/03 $17.00 © 2003 IEEE

companies are not willing to reveal these details. This

paper reports the first results from a controlled case study

where a team of four developers was acquired to develop

a fully operational system for managing the research

institute’s research data in eight weeks. Due to the tight

schedule, the functionality was not fixed. The concrete

results reported are based on the first two system releases.

The resulting product was tested by 17 testers who used a

maximum of 45 minutes to test the defined user

functionality. The data shows that the post-release defect

rate was 2.1 defects/Kloc, which can be seen acceptable

for a product yet at production state. The comparison of

the results from the first two releases shows furthermore

that there is a rather steep learning curve when adopting

the XP process for a team that is novice in XP practices.

The first release thus is basically about learning while the

second release already shows improvement in all regards.

For example, the user and task definition skills are

improved as well as the estimation skills. For the specific

details see section three.

It should be noted that the team collected more data

about their work than is the case usually. This was

achieved by placing value on the data collection. This is in

accordance to basic values of agile thinking. The

development team is designed to deliver business value

for the customer organization. The research institute had

thus a dual goal for the project. The issue of data

collection was addressed before the project and

periodically re-enforced by having the management to ask

to see some of the basic data. While the data collection

and recording took only about 2% of the total

development time, it was found to be an issue producing

discomfort. If the client organization does not require

detailed data about the development process, the team

may easily lag behind in data collection. For this, certain

data collection rules must be established within the

development team. In our case, the team decided to put up

a sheet on the wall where each developer will sign their

name after the data has been recorded at the end of the

working day to ensure that the commitment to collect and

record data has been met.

The data obtained can be used by other organizations

working in similar – i.e. close to the agile home ground –

environment. Especially, attention should be paid in

designing how much effort can be allocated to tasks. This

study has shown that at least in the beginning of an XP

project, no more than 50-60% of work effort should be

allocated directly to tasks. Also, project management

appears to require more effort than initially thought.

We will continue to follow up the development process

and will report the concrete results from the project as a

whole when the system is delivered. The resulting product

quality will be inspected from different perspectives

including the system code quality. Qualitative data about

the process and practices are being collected

systematically throughout the development project and all

participating stakeholders will be interviewed to evaluate

the progress. We believe that the data reported in this

paper is of value for practitioners and researchers in the

field. More concrete data is needed for the agile

movement to progress beyond the practicing enthusiastic.

While software professionals seek a rational basis for

making a decision which method they should adopt, the

scientific and empirical foundation for such a

rationalization is often missing. Fenton [49] reminded

that methods introduced continue be based more on faith

than on empirical data. There is no quick solution to this

problem. As an answer, Fenton suggested that only by

gradually contributing to the empirical body of knowledge

within the specific area of application are we as

researchers and practitioners in a better position to make

our decisions on the methods and practices we want to

use. This paper has served for this specific purpose.

Acknowledgments

The author would like to thank the development team for

their effort in collecting the data, Mr. Juha Koskela at

VTT Technical Research Centre for his considerable

effort as in the role of an on-site customer for the project,

and the three anonymous reviewers for their comments on

the early version of the paper.

References

[1] C. Larman and V. R. Basili, "Iterative and incremental

development: A brief history," IEEE Software, vol. 20, pp.

47-56, 2003.

[2] L. Williams and A. Cockburn, "Agile software development:

It's about feedback and change," IEEE Software, vol. 20, pp.

39-43, 2003.

[3] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, Agile

software development methods: Review and Analysis.

Espoo, Finland: Technical Research Centre of Finland, VTT

Publications 478,

http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf, 2002.

[4] K. Beck, Extreme programming explained: Embrace

change. Reading, MA.: Addison Wesley Longman, Inc.,

2000.

[5] W. C. Wake, Extreme Programming Explored: Addison-

Wesley, 2001.

[6] G. Succi and M. Marchesi, "Extreme Programming

Examined: Selected Papers from the XP 2000 Conference,"

presented at XP 2000 Conference, Cagliari, Italy, 2000.

[7] R. M. a. J. Newkirk, Extreme Programming in Practice:

Addison-Wesley, 2001.

[8] R. Jeffries, A. Anderson, and C. Hendrickson, Extreme

Programming Installed. Upper Saddle River, NJ: Addison-

Wesley, 2001.

[9] R. Hightower and N. Lesiecki, Java Tools for Extreme

Proceedings of the 29th EUROMICRO Conference “New Waves in System Architecture” (EUROMICRO’03)
1089-6503/03 $17.00 © 2003 IEEE

Programming. New York: Wiley Computer Publishing,

2002.

[10] K. Beck and M. Fowler, Planning extreme programming.

New York: Addison-Wesley, 2001.

[11] L. Crispin and T. House, Testing extreme programming.

New York: Addison-Wesley, 2003.

[12] J. Kivi, D. Haydon, J. Hayes, R. Schneider, and G. Succi,

"Extreme Programming: a University Team Design

Experience," presented at CCECE 2000 - Canadian

Conference on Electrical and Computer Engineering, Nova

Scotia, NS, USA, 2000.

[13] J. Grenning, "Launching XP at a Process-Intensive

Company," IEEE Software, vol. 18, pp. 3-9, 2001.

[14] P. Schuh, "Recovery, Redemption, and Extreme

Programming," IEEE Software, vol. 18, pp. 34-41, 2001.

[15] D. Wells and T. Buckley, "The VCAPS project: An

example of transitioning to XP," in Extreme programming

examined, G. Succi and M. Marchesi, Eds. New York:

Addison-Wesley, 2001, pp. 399-422.

[16] P. Sommerlad, "Adopting XP," in Extreme programming

examined, G. Succi and M. Marchesi, Eds. New York:

Addison-Wesley, 2001, pp. 423-432.

[17] K. Boutin, "Introducing extreme programming in a

research and development laboratory," in Extreme

programming examined, G. Succi and M. Marchesi, Eds.

New York: Addison-Wesley, 2001, pp. 433-448.

[18] M. Lindvall, V. Basili, B. Boehm, P. Costa, K. Dangle, et

al., "Empirical findings in agile methods," presented at

XP/Agile Universe 2002, Chicago, USA, 2002.

[19] G. Melnik, L. Williams, and A. Geras, "Empirical

Evaluation of Agile Processes," presented at XP/Agile

Universe 2002, Chicago, USA, 2002.

[20] P. Abrahamsson, J. Warsta, M. T. Siponen, and J.

Ronkainen, "New directions on agile methods: A

comparative analysis," presented at International Conference

on Software Engineering (ICSE25), Portland, Oregon, USA,

2003.

[21] P. McBreen, Questioning extreme programming. New

York: Addison-Wesley, 2001.

[22] K. Beck, "Embracing change with extreme programming,"

IEEE Computer, pp. 70-77, 1999.

[23] B. Boehm, "Get Ready For The Agile Methods, With

Care," Computer, vol. 35, pp. 64-69, 2002.

[24] R. K. Yin, Case Study Research Design and Methods, 2nd

ed ed: Sage Publications, 1994.

[25] T. D. Jick, "Mixing qualitative and quantitative methods:

Triangulation in action," Administrative Science Quarterly,

vol. 24, pp. 602-611, 1979.

[26] J. B. Cunningham, "Case study principles for different

types of cases," Quality and quantity, vol. 31, pp. 401-423,

1997.

[27] D. Avison, F. Lau, M. Myers, and P. A. Nielsen, "Action

Research," Communications of the ACM, vol. 42, pp. 94-97,

1999.

[28] P. Järvinen, On research methods. Tampere: Juvenes-

Print, 2001.

[29] P. Oquist, "The epistemology of action research," Acta

Sociologica, vol. 21, pp. 143-163, 1978.

[30] G. I. Susman and R. D. Evered, "An Assessment of the

Scientific Merits of Action Research," Administrative

Science Quarterly, vol. 23, pp. 582-603, 1978.

[31] T. Dingsøyr and G. K. Hanssen, "Extending Agile

Methods: Postmortem Reviews as Extended Feedback,"

presented at 4th International Workshop on Learning

Software Organizations, Chicago, Illinois, USA, 2002.

[32] R. L. Baskerville and A. T. Wood-Harper, "Diversity in

information systems action research methods," European

Journal of Information Systems, vol. 7, pp. 90-107, 1998.

[33] W. S. Humphrey, A discipline for software engineering.

Reading, Mass.: Addison Wesley, 1995.

[34] C. Farell, R. Narang, S. Kapitan, and H. Webber,

"Towards an Effective Onsite Customer Practice," presented

at XP 2002, Sardinia, Italy, 2002.

[35] A. Martin, J. Noble, and R. Biddle, "Being Jane

Malkovich: A Look Into the World of an XP Customer,"

presented at XP 2003, Genoa, Italy, 2003.

[36] L. A. Griffin, "A Customer Experience: Implementing

XP," presented at XP Universe, Raleigh, NC, USA, 2001.

[37] J. Hartwick and H. Barki, "Explaining the Role of User

Participation in Information System Use," Management

Science, vol. 40, pp. 440-465, 1994.

[38] J. Nawrocki and A. Wojciechowski, "Experimental

evaluation of pair programming," presented at ESCOM

2001, London, UK, 2001.

[39] L. Williams, R. R. Kessler, W. Cunningham, and R.

Jeffries, "Strengthening the case for pair programming,"

IEEE Software, vol. 17, pp. 19-25, 2000.

[40] L. Williams and R. Kessler, Pair programming

illuminated. New York: Addison-Wesley, 2003.

[41] G. Succi, W. Pedrycz, M. Marchesi, and L. Williams,

"Preliminary analysis of the effects of pair programming on

job satisfaction," presented at XP 2002, Alghero, Sardinia,

Italy, 2002.

[42] A. Janes, B. Russo, P. Zuliani, and G. Succi, "An

empirical analysis on the discontinuous use of pair

programming," presented at XP 2003, Genoa, Italy, 2003.

[43] S. Heiberg, U. Puus, P. Salumaa, and A. Seeba, "Pair-

programming effect on developers productivity," presented

at XP 2003, Genoa, Italy, 2003.

[44] K. M. Lui and K. C. C. Chan, "When does a pair

outperform two individuals," presented at XP 2003, Genoa,

Italy, 2003.

[45] W. Hayes and J. W. Over, "The Personal Software Process

(PSP): An Empirical Study of the Impact of PSP on

Individual Engineers," Software Engineering Institute,

CMU/SEI-97-TR-001

[46] P. M. Johnson, C. A. Moore, J. A. Dane, and R. S. Brwer,

"Empirically guided software effort guesstimation," IEEE

Software, vol. 17, pp. 51-56, 2000.

[47] J. Langr, "Book review: Questioning extreme

programming," vol. Page accessed March 10, 2003:

XProgramming.com: An Extreme Programming Resource,

2002.

[48] W. S. Humphrey, Managing the Software Process.

Reading, Mass.: Addison-Wesley, 1989.

[49] N. Fenton, "Viewpoint Article: Conducting and presenting

empirical software engineering," Empirical Software

Engineering, vol. 6, pp. 195-200, 2001.

Proceedings of the 29th EUROMICRO Conference “New Waves in System Architecture” (EUROMICRO’03)
1089-6503/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

